Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386280369> ?p ?o ?g. }
- W4386280369 endingPage "e0290779" @default.
- W4386280369 startingPage "e0290779" @default.
- W4386280369 abstract "Low-resource languages are gaining much-needed attention with the advent of deep learning models and pre-trained word embedding. Though spoken by more than 230 million people worldwide, Urdu is one such low-resource language that has recently gained popularity online and is attracting a lot of attention and support from the research community. One challenge faced by such resource-constrained languages is the scarcity of publicly available large-scale datasets for conducting any meaningful study. In this paper, we address this challenge by collecting the first-ever large-scale Urdu Tweet Dataset for sentiment analysis and emotion recognition. The dataset consists of a staggering number of 1, 140, 821 tweets in the Urdu language. Obviously, manual labeling of such a large number of tweets would have been tedious, error-prone, and humanly impossible; therefore, the paper also proposes a weakly supervised approach to label tweets automatically. Emoticons used within the tweets, in addition to SentiWordNet, are utilized to propose a weakly supervised labeling approach to categorize extracted tweets into positive, negative, and neutral categories. Baseline deep learning models are implemented to compute the accuracy of three labeling approaches, i.e., VADER, TextBlob, and our proposed weakly supervised approach. Unlike the weakly supervised labeling approach, the VADER and TextBlob put most tweets as neutral and show a high correlation between the two. This is largely attributed to the fact that these models do not consider emoticons for assigning polarity." @default.
- W4386280369 created "2023-08-31" @default.
- W4386280369 creator A5027727055 @default.
- W4386280369 creator A5044015235 @default.
- W4386280369 creator A5045728872 @default.
- W4386280369 creator A5052954560 @default.
- W4386280369 creator A5053152000 @default.
- W4386280369 creator A5085341225 @default.
- W4386280369 date "2023-08-30" @default.
- W4386280369 modified "2023-09-29" @default.
- W4386280369 title "SentiUrdu-1M: A large-scale tweet dataset for Urdu text sentiment analysis using weakly supervised learning" @default.
- W4386280369 cites W1444168786 @default.
- W4386280369 cites W1498436455 @default.
- W4386280369 cites W1513612986 @default.
- W4386280369 cites W1964613733 @default.
- W4386280369 cites W1997760292 @default.
- W4386280369 cites W2028501442 @default.
- W4386280369 cites W2064675550 @default.
- W4386280369 cites W2081580037 @default.
- W4386280369 cites W2102134623 @default.
- W4386280369 cites W2115023510 @default.
- W4386280369 cites W2122522916 @default.
- W4386280369 cites W2131774270 @default.
- W4386280369 cites W2160250477 @default.
- W4386280369 cites W2166706824 @default.
- W4386280369 cites W2203890649 @default.
- W4386280369 cites W2303040953 @default.
- W4386280369 cites W2607473328 @default.
- W4386280369 cites W2611614234 @default.
- W4386280369 cites W2767285835 @default.
- W4386280369 cites W2787673610 @default.
- W4386280369 cites W2787936194 @default.
- W4386280369 cites W2808673205 @default.
- W4386280369 cites W2808896609 @default.
- W4386280369 cites W2809254203 @default.
- W4386280369 cites W2887692705 @default.
- W4386280369 cites W2909732894 @default.
- W4386280369 cites W2914363692 @default.
- W4386280369 cites W2927439335 @default.
- W4386280369 cites W2937626916 @default.
- W4386280369 cites W2963404906 @default.
- W4386280369 cites W2978320640 @default.
- W4386280369 cites W3005825976 @default.
- W4386280369 cites W3045495327 @default.
- W4386280369 cites W3049030479 @default.
- W4386280369 cites W3090154305 @default.
- W4386280369 cites W3161603821 @default.
- W4386280369 cites W3176558250 @default.
- W4386280369 cites W3198331626 @default.
- W4386280369 cites W3198743574 @default.
- W4386280369 cites W66373487 @default.
- W4386280369 doi "https://doi.org/10.1371/journal.pone.0290779" @default.
- W4386280369 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37647318" @default.
- W4386280369 hasPublicationYear "2023" @default.
- W4386280369 type Work @default.
- W4386280369 citedByCount "0" @default.
- W4386280369 crossrefType "journal-article" @default.
- W4386280369 hasAuthorship W4386280369A5027727055 @default.
- W4386280369 hasAuthorship W4386280369A5044015235 @default.
- W4386280369 hasAuthorship W4386280369A5045728872 @default.
- W4386280369 hasAuthorship W4386280369A5052954560 @default.
- W4386280369 hasAuthorship W4386280369A5053152000 @default.
- W4386280369 hasAuthorship W4386280369A5085341225 @default.
- W4386280369 hasBestOaLocation W43862803691 @default.
- W4386280369 hasConcept C108583219 @default.
- W4386280369 hasConcept C119857082 @default.
- W4386280369 hasConcept C136389625 @default.
- W4386280369 hasConcept C138885662 @default.
- W4386280369 hasConcept C154945302 @default.
- W4386280369 hasConcept C15744967 @default.
- W4386280369 hasConcept C204321447 @default.
- W4386280369 hasConcept C205649164 @default.
- W4386280369 hasConcept C2777350258 @default.
- W4386280369 hasConcept C2778755073 @default.
- W4386280369 hasConcept C2780586970 @default.
- W4386280369 hasConcept C41008148 @default.
- W4386280369 hasConcept C41895202 @default.
- W4386280369 hasConcept C50644808 @default.
- W4386280369 hasConcept C58640448 @default.
- W4386280369 hasConcept C66402592 @default.
- W4386280369 hasConcept C77805123 @default.
- W4386280369 hasConcept C94124525 @default.
- W4386280369 hasConceptScore W4386280369C108583219 @default.
- W4386280369 hasConceptScore W4386280369C119857082 @default.
- W4386280369 hasConceptScore W4386280369C136389625 @default.
- W4386280369 hasConceptScore W4386280369C138885662 @default.
- W4386280369 hasConceptScore W4386280369C154945302 @default.
- W4386280369 hasConceptScore W4386280369C15744967 @default.
- W4386280369 hasConceptScore W4386280369C204321447 @default.
- W4386280369 hasConceptScore W4386280369C205649164 @default.
- W4386280369 hasConceptScore W4386280369C2777350258 @default.
- W4386280369 hasConceptScore W4386280369C2778755073 @default.
- W4386280369 hasConceptScore W4386280369C2780586970 @default.
- W4386280369 hasConceptScore W4386280369C41008148 @default.
- W4386280369 hasConceptScore W4386280369C41895202 @default.
- W4386280369 hasConceptScore W4386280369C50644808 @default.
- W4386280369 hasConceptScore W4386280369C58640448 @default.
- W4386280369 hasConceptScore W4386280369C66402592 @default.