Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386283923> ?p ?o ?g. }
- W4386283923 endingPage "13042" @default.
- W4386283923 startingPage "13042" @default.
- W4386283923 abstract "Efficient and sustainable transportation is crucial for addressing the environmental and social challenges associated with urban mobility. Accurate estimation of travel time plays a pivotal role in traffic management and trip planning. This study focused on leveraging machine learning models to enhance travel time estimation accuracy on toll roads under diverse traffic conditions. Two models were developed for travel time estimation under a variety of traffic conditions on the Don Muang Tollway, Bangkok, Thailand: a long short-term memory (LSTM) recurrent neural network model and a support vector regression (SVR) model. Missing data were treated using the proposed segment-based data imputation method. Unlike other studies, the effects of missing input data on the travel time model performance were also analyzed. Traffic parameters, such as speed and flow, along with other relevant parameters (time of day, day of the week, holiday indicators, and a missing data indicator), were fed into each model to estimate travel time on each of the four specific routes. The LSTM and SVR results had similar performance levels based on evaluating the all-day pooled data. However, the mean absolute percentage errors were lower for LSTM during peak periods, while SVR performed slightly better during off-peak periods. Additionally, LSTM coped substantially better than SVR with unusual traffic fluctuations. The sensitivity analysis of the missing input data in this study also revealed that the LSTM model was more robust to the high degree of missing data than the SVR model." @default.
- W4386283923 created "2023-08-31" @default.
- W4386283923 creator A5003633581 @default.
- W4386283923 creator A5090946904 @default.
- W4386283923 creator A5092717260 @default.
- W4386283923 date "2023-08-29" @default.
- W4386283923 modified "2023-09-30" @default.
- W4386283923 title "Estimating Toll Road Travel Times Using Segment-Based Data Imputation" @default.
- W4386283923 cites W1497720824 @default.
- W4386283923 cites W1504839832 @default.
- W4386283923 cites W1875626450 @default.
- W4386283923 cites W2008056655 @default.
- W4386283923 cites W2020641160 @default.
- W4386283923 cites W2040975718 @default.
- W4386283923 cites W2069929199 @default.
- W4386283923 cites W2090035883 @default.
- W4386283923 cites W2096532744 @default.
- W4386283923 cites W2097148541 @default.
- W4386283923 cites W2111789455 @default.
- W4386283923 cites W2123174527 @default.
- W4386283923 cites W2131850848 @default.
- W4386283923 cites W2139628333 @default.
- W4386283923 cites W2144499799 @default.
- W4386283923 cites W2152196380 @default.
- W4386283923 cites W2161608691 @default.
- W4386283923 cites W2163150789 @default.
- W4386283923 cites W2168156818 @default.
- W4386283923 cites W2263031682 @default.
- W4386283923 cites W2461959976 @default.
- W4386283923 cites W2496114304 @default.
- W4386283923 cites W2572939427 @default.
- W4386283923 cites W2765137096 @default.
- W4386283923 cites W2793062606 @default.
- W4386283923 cites W2807904376 @default.
- W4386283923 cites W2808956223 @default.
- W4386283923 cites W2892190444 @default.
- W4386283923 cites W2954311687 @default.
- W4386283923 cites W2962834725 @default.
- W4386283923 cites W3038891142 @default.
- W4386283923 cites W3041279471 @default.
- W4386283923 cites W3048485161 @default.
- W4386283923 cites W3049554854 @default.
- W4386283923 cites W3182501623 @default.
- W4386283923 cites W4224104642 @default.
- W4386283923 cites W4239510810 @default.
- W4386283923 doi "https://doi.org/10.3390/su151713042" @default.
- W4386283923 hasPublicationYear "2023" @default.
- W4386283923 type Work @default.
- W4386283923 citedByCount "0" @default.
- W4386283923 crossrefType "journal-article" @default.
- W4386283923 hasAuthorship W4386283923A5003633581 @default.
- W4386283923 hasAuthorship W4386283923A5090946904 @default.
- W4386283923 hasAuthorship W4386283923A5092717260 @default.
- W4386283923 hasBestOaLocation W43862839231 @default.
- W4386283923 hasConcept C105795698 @default.
- W4386283923 hasConcept C119857082 @default.
- W4386283923 hasConcept C12267149 @default.
- W4386283923 hasConcept C124101348 @default.
- W4386283923 hasConcept C127413603 @default.
- W4386283923 hasConcept C151406439 @default.
- W4386283923 hasConcept C201995342 @default.
- W4386283923 hasConcept C207512268 @default.
- W4386283923 hasConcept C22212356 @default.
- W4386283923 hasConcept C2778025104 @default.
- W4386283923 hasConcept C2985733770 @default.
- W4386283923 hasConcept C33923547 @default.
- W4386283923 hasConcept C38652104 @default.
- W4386283923 hasConcept C41008148 @default.
- W4386283923 hasConcept C50644808 @default.
- W4386283923 hasConcept C54355233 @default.
- W4386283923 hasConcept C58041806 @default.
- W4386283923 hasConcept C86803240 @default.
- W4386283923 hasConcept C9357733 @default.
- W4386283923 hasConcept C96250715 @default.
- W4386283923 hasConceptScore W4386283923C105795698 @default.
- W4386283923 hasConceptScore W4386283923C119857082 @default.
- W4386283923 hasConceptScore W4386283923C12267149 @default.
- W4386283923 hasConceptScore W4386283923C124101348 @default.
- W4386283923 hasConceptScore W4386283923C127413603 @default.
- W4386283923 hasConceptScore W4386283923C151406439 @default.
- W4386283923 hasConceptScore W4386283923C201995342 @default.
- W4386283923 hasConceptScore W4386283923C207512268 @default.
- W4386283923 hasConceptScore W4386283923C22212356 @default.
- W4386283923 hasConceptScore W4386283923C2778025104 @default.
- W4386283923 hasConceptScore W4386283923C2985733770 @default.
- W4386283923 hasConceptScore W4386283923C33923547 @default.
- W4386283923 hasConceptScore W4386283923C38652104 @default.
- W4386283923 hasConceptScore W4386283923C41008148 @default.
- W4386283923 hasConceptScore W4386283923C50644808 @default.
- W4386283923 hasConceptScore W4386283923C54355233 @default.
- W4386283923 hasConceptScore W4386283923C58041806 @default.
- W4386283923 hasConceptScore W4386283923C86803240 @default.
- W4386283923 hasConceptScore W4386283923C9357733 @default.
- W4386283923 hasConceptScore W4386283923C96250715 @default.
- W4386283923 hasFunder F4320322614 @default.
- W4386283923 hasIssue "17" @default.
- W4386283923 hasLocation W43862839231 @default.
- W4386283923 hasOpenAccess W4386283923 @default.