Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386284388> ?p ?o ?g. }
- W4386284388 endingPage "7535" @default.
- W4386284388 startingPage "7535" @default.
- W4386284388 abstract "A camera captures multidimensional information of the real world by convolving it into two dimensions using a sensing matrix. The original multidimensional information is then reconstructed from captured images. Traditionally, multidimensional information has been captured by uniform sampling, but by optimizing the sensing matrix, we can capture images more efficiently and reconstruct multidimensional information with high quality. Although compressive video sensing requires random sampling as a theoretical optimum, when designing the sensing matrix in practice, there are many hardware limitations (such as exposure and color filter patterns). Existing studies have found random sampling is not always the best solution for compressive sensing because the optimal sampling pattern is related to the scene context, and it is hard to manually design a sampling pattern and reconstruction algorithm. In this paper, we propose an end-to-end learning approach that jointly optimizes the sampling pattern as well as the reconstruction decoder. We applied this deep sensing approach to the video compressive sensing problem. We modeled the spatio–temporal sampling and color filter pattern using a convolutional neural network constrained by hardware limitations during network training. We demonstrated that the proposed method performs better than the manually designed method in gray-scale video and color video acquisitions." @default.
- W4386284388 created "2023-08-31" @default.
- W4386284388 creator A5024453747 @default.
- W4386284388 creator A5027160863 @default.
- W4386284388 creator A5032196371 @default.
- W4386284388 creator A5040773064 @default.
- W4386284388 creator A5065709581 @default.
- W4386284388 creator A5089223141 @default.
- W4386284388 date "2023-08-30" @default.
- W4386284388 modified "2023-10-16" @default.
- W4386284388 title "Deep Sensing for Compressive Video Acquisition" @default.
- W4386284388 cites W1540804545 @default.
- W4386284388 cites W1972180784 @default.
- W4386284388 cites W1977794869 @default.
- W4386284388 cites W2008533014 @default.
- W4386284388 cites W2028339660 @default.
- W4386284388 cites W2035192779 @default.
- W4386284388 cites W2065704711 @default.
- W4386284388 cites W2067743803 @default.
- W4386284388 cites W2100495367 @default.
- W4386284388 cites W2122548617 @default.
- W4386284388 cites W2130394175 @default.
- W4386284388 cites W2150066425 @default.
- W4386284388 cites W2151364185 @default.
- W4386284388 cites W2163239818 @default.
- W4386284388 cites W2342838199 @default.
- W4386284388 cites W2344974936 @default.
- W4386284388 cites W2427848051 @default.
- W4386284388 cites W2556872594 @default.
- W4386284388 cites W2737028355 @default.
- W4386284388 cites W2792690686 @default.
- W4386284388 cites W2798895617 @default.
- W4386284388 cites W2803395129 @default.
- W4386284388 cites W2894849572 @default.
- W4386284388 cites W2894897083 @default.
- W4386284388 cites W2895187321 @default.
- W4386284388 cites W2919115771 @default.
- W4386284388 cites W2943940051 @default.
- W4386284388 cites W2956039874 @default.
- W4386284388 cites W2962778775 @default.
- W4386284388 cites W2963764784 @default.
- W4386284388 cites W2964251511 @default.
- W4386284388 cites W2971374671 @default.
- W4386284388 cites W2979683669 @default.
- W4386284388 cites W2997665396 @default.
- W4386284388 cites W2998391154 @default.
- W4386284388 cites W3016829532 @default.
- W4386284388 cites W3022171491 @default.
- W4386284388 cites W3033352976 @default.
- W4386284388 cites W3033490538 @default.
- W4386284388 cites W3035446378 @default.
- W4386284388 cites W3177126889 @default.
- W4386284388 cites W4220921757 @default.
- W4386284388 cites W4225639683 @default.
- W4386284388 cites W4296829727 @default.
- W4386284388 cites W4376255330 @default.
- W4386284388 doi "https://doi.org/10.3390/s23177535" @default.
- W4386284388 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37687990" @default.
- W4386284388 hasPublicationYear "2023" @default.
- W4386284388 type Work @default.
- W4386284388 citedByCount "0" @default.
- W4386284388 crossrefType "journal-article" @default.
- W4386284388 hasAuthorship W4386284388A5024453747 @default.
- W4386284388 hasAuthorship W4386284388A5027160863 @default.
- W4386284388 hasAuthorship W4386284388A5032196371 @default.
- W4386284388 hasAuthorship W4386284388A5040773064 @default.
- W4386284388 hasAuthorship W4386284388A5065709581 @default.
- W4386284388 hasAuthorship W4386284388A5089223141 @default.
- W4386284388 hasBestOaLocation W43862843881 @default.
- W4386284388 hasConcept C106131492 @default.
- W4386284388 hasConcept C124851039 @default.
- W4386284388 hasConcept C140779682 @default.
- W4386284388 hasConcept C151730666 @default.
- W4386284388 hasConcept C153180895 @default.
- W4386284388 hasConcept C154945302 @default.
- W4386284388 hasConcept C2779343474 @default.
- W4386284388 hasConcept C31972630 @default.
- W4386284388 hasConcept C41008148 @default.
- W4386284388 hasConcept C81363708 @default.
- W4386284388 hasConcept C86803240 @default.
- W4386284388 hasConceptScore W4386284388C106131492 @default.
- W4386284388 hasConceptScore W4386284388C124851039 @default.
- W4386284388 hasConceptScore W4386284388C140779682 @default.
- W4386284388 hasConceptScore W4386284388C151730666 @default.
- W4386284388 hasConceptScore W4386284388C153180895 @default.
- W4386284388 hasConceptScore W4386284388C154945302 @default.
- W4386284388 hasConceptScore W4386284388C2779343474 @default.
- W4386284388 hasConceptScore W4386284388C31972630 @default.
- W4386284388 hasConceptScore W4386284388C41008148 @default.
- W4386284388 hasConceptScore W4386284388C81363708 @default.
- W4386284388 hasConceptScore W4386284388C86803240 @default.
- W4386284388 hasIssue "17" @default.
- W4386284388 hasLocation W43862843881 @default.
- W4386284388 hasLocation W43862843882 @default.
- W4386284388 hasOpenAccess W4386284388 @default.
- W4386284388 hasPrimaryLocation W43862843881 @default.
- W4386284388 hasRelatedWork W1891287906 @default.
- W4386284388 hasRelatedWork W1969923398 @default.