Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386287535> ?p ?o ?g. }
- W4386287535 endingPage "20" @default.
- W4386287535 startingPage "1" @default.
- W4386287535 abstract "Artificial Intelligence (AI) Machine Learning (ML) technologies, particularly Deep Learning (DL), have demonstrated significant potential in the interpretation of Remote Sensing (RS) imagery, covering tasks such as scene classification, object detection, land-cover/land-use classification, change detection, and multi-view stereo reconstruction. Large-scale training samples are essential for ML/DL models to achieve optimal performance. However, the current organization of training samples is ad-hoc and vendor-specific, lacking an integrated approach that can effectively manage training samples from different vendors to meet the demands of various RS AI tasks. This article proposes a solution to address these challenges by designing and implementing LuoJiaSET, a large-scale training sample database system for intelligent interpretation of RS imagery. LuoJiaSET accommodates over five million training samples, providing support for cross-dataset queries and serving as a comprehensive training data store for RS AI model training and calibration. It overcomes challenges related to label semantic categories, structural heterogeneity in label representation, and interoperable data access." @default.
- W4386287535 created "2023-08-31" @default.
- W4386287535 creator A5003200822 @default.
- W4386287535 creator A5004788238 @default.
- W4386287535 creator A5005517375 @default.
- W4386287535 creator A5006360988 @default.
- W4386287535 creator A5008875459 @default.
- W4386287535 creator A5032507421 @default.
- W4386287535 creator A5049204525 @default.
- W4386287535 creator A5075615122 @default.
- W4386287535 creator A5079293666 @default.
- W4386287535 creator A5081841205 @default.
- W4386287535 date "2023-08-30" @default.
- W4386287535 modified "2023-10-03" @default.
- W4386287535 title "A large scale training sample database system for intelligent interpretation of remote sensing imagery" @default.
- W4386287535 cites W1526295910 @default.
- W4386287535 cites W1594676769 @default.
- W4386287535 cites W1824774525 @default.
- W4386287535 cites W1912954554 @default.
- W4386287535 cites W1958291604 @default.
- W4386287535 cites W2005368619 @default.
- W4386287535 cites W2176924101 @default.
- W4386287535 cites W2211843587 @default.
- W4386287535 cites W2296151615 @default.
- W4386287535 cites W2302501749 @default.
- W4386287535 cites W2308318555 @default.
- W4386287535 cites W2466055095 @default.
- W4386287535 cites W2577537809 @default.
- W4386287535 cites W2609402060 @default.
- W4386287535 cites W2626107033 @default.
- W4386287535 cites W2769613401 @default.
- W4386287535 cites W2890732922 @default.
- W4386287535 cites W2908320224 @default.
- W4386287535 cites W2913323966 @default.
- W4386287535 cites W2935079508 @default.
- W4386287535 cites W2955950606 @default.
- W4386287535 cites W2962843773 @default.
- W4386287535 cites W2966542792 @default.
- W4386287535 cites W2981409191 @default.
- W4386287535 cites W2991488782 @default.
- W4386287535 cites W2992240579 @default.
- W4386287535 cites W3027225766 @default.
- W4386287535 cites W3035821888 @default.
- W4386287535 cites W3038948729 @default.
- W4386287535 cites W3048064159 @default.
- W4386287535 cites W3091842132 @default.
- W4386287535 cites W3100521496 @default.
- W4386287535 cites W3103856189 @default.
- W4386287535 cites W3104899156 @default.
- W4386287535 cites W3105577662 @default.
- W4386287535 cites W3201797941 @default.
- W4386287535 cites W3205710591 @default.
- W4386287535 cites W4226456028 @default.
- W4386287535 cites W4281790783 @default.
- W4386287535 cites W4282960636 @default.
- W4386287535 cites W4283776488 @default.
- W4386287535 doi "https://doi.org/10.1080/10095020.2023.2244005" @default.
- W4386287535 hasPublicationYear "2023" @default.
- W4386287535 type Work @default.
- W4386287535 citedByCount "1" @default.
- W4386287535 countsByYear W43862875352023 @default.
- W4386287535 crossrefType "journal-article" @default.
- W4386287535 hasAuthorship W4386287535A5003200822 @default.
- W4386287535 hasAuthorship W4386287535A5004788238 @default.
- W4386287535 hasAuthorship W4386287535A5005517375 @default.
- W4386287535 hasAuthorship W4386287535A5006360988 @default.
- W4386287535 hasAuthorship W4386287535A5008875459 @default.
- W4386287535 hasAuthorship W4386287535A5032507421 @default.
- W4386287535 hasAuthorship W4386287535A5049204525 @default.
- W4386287535 hasAuthorship W4386287535A5075615122 @default.
- W4386287535 hasAuthorship W4386287535A5079293666 @default.
- W4386287535 hasAuthorship W4386287535A5081841205 @default.
- W4386287535 hasBestOaLocation W43862875351 @default.
- W4386287535 hasConcept C119857082 @default.
- W4386287535 hasConcept C124101348 @default.
- W4386287535 hasConcept C127413603 @default.
- W4386287535 hasConcept C136764020 @default.
- W4386287535 hasConcept C144133560 @default.
- W4386287535 hasConcept C147176958 @default.
- W4386287535 hasConcept C153294291 @default.
- W4386287535 hasConcept C154945302 @default.
- W4386287535 hasConcept C162853370 @default.
- W4386287535 hasConcept C185592680 @default.
- W4386287535 hasConcept C198531522 @default.
- W4386287535 hasConcept C199360897 @default.
- W4386287535 hasConcept C20136886 @default.
- W4386287535 hasConcept C205649164 @default.
- W4386287535 hasConcept C2777211547 @default.
- W4386287535 hasConcept C2777338717 @default.
- W4386287535 hasConcept C2778755073 @default.
- W4386287535 hasConcept C2780648208 @default.
- W4386287535 hasConcept C41008148 @default.
- W4386287535 hasConcept C43617362 @default.
- W4386287535 hasConcept C4792198 @default.
- W4386287535 hasConcept C527412718 @default.
- W4386287535 hasConcept C58640448 @default.
- W4386287535 hasConcept C77088390 @default.
- W4386287535 hasConceptScore W4386287535C119857082 @default.