Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386287563> ?p ?o ?g. }
- W4386287563 endingPage "542" @default.
- W4386287563 startingPage "515" @default.
- W4386287563 abstract "Electromagnetic particle-in-cell (EMPIC) algorithms have been a popular choice for simulating kinetic plasmas due to their ability to accurately capture complex transient nonlinear plasma phenomena. Despite the accuracy of EMPIC simulations, they incur high very high computational costs. This is a direct consequence of the large number of particles necessary to obtain accurate results. In this chapter, we discuss the use of Koopman autoencoders as effective machine learning based reduced-order models to mitigate the computational burden of traditional EMPIC algorithms. We discuss how deep learning architectures provide a natural data-driven route for approximating finite-dimensional Koopman invariant subspaces associated with kinetic plasma problems. We also provide a framework for the inclusion of physics-informed constraints into Koopman autoencoders models for this class of problems." @default.
- W4386287563 created "2023-08-31" @default.
- W4386287563 creator A5016027781 @default.
- W4386287563 creator A5045235557 @default.
- W4386287563 creator A5056184039 @default.
- W4386287563 date "2023-08-30" @default.
- W4386287563 modified "2023-10-16" @default.
- W4386287563 title "Koopman Autoencoders for Reduced‐Order Modeling of Kinetic Plasmas" @default.
- W4386287563 cites W1559947614 @default.
- W4386287563 cites W1643238572 @default.
- W4386287563 cites W1672666614 @default.
- W4386287563 cites W1967643181 @default.
- W4386287563 cites W1997054581 @default.
- W4386287563 cites W2008762135 @default.
- W4386287563 cites W2014356541 @default.
- W4386287563 cites W2033793034 @default.
- W4386287563 cites W2043500677 @default.
- W4386287563 cites W2074709256 @default.
- W4386287563 cites W2076063813 @default.
- W4386287563 cites W2086236774 @default.
- W4386287563 cites W2089215097 @default.
- W4386287563 cites W2089435310 @default.
- W4386287563 cites W2098504241 @default.
- W4386287563 cites W2106849258 @default.
- W4386287563 cites W2119507047 @default.
- W4386287563 cites W2130970049 @default.
- W4386287563 cites W2141673608 @default.
- W4386287563 cites W2144496220 @default.
- W4386287563 cites W2164954534 @default.
- W4386287563 cites W2165062650 @default.
- W4386287563 cites W2165093166 @default.
- W4386287563 cites W2168222921 @default.
- W4386287563 cites W2172945660 @default.
- W4386287563 cites W2603685213 @default.
- W4386287563 cites W2777417212 @default.
- W4386287563 cites W2782473284 @default.
- W4386287563 cites W2884775584 @default.
- W4386287563 cites W2893804842 @default.
- W4386287563 cites W2899283552 @default.
- W4386287563 cites W2900615125 @default.
- W4386287563 cites W2913323966 @default.
- W4386287563 cites W2983023174 @default.
- W4386287563 cites W2985942842 @default.
- W4386287563 cites W2996249730 @default.
- W4386287563 cites W3087414910 @default.
- W4386287563 cites W3099803807 @default.
- W4386287563 cites W3101260193 @default.
- W4386287563 cites W3109457141 @default.
- W4386287563 cites W3123616420 @default.
- W4386287563 cites W3163993681 @default.
- W4386287563 cites W3195146885 @default.
- W4386287563 cites W3205073660 @default.
- W4386287563 cites W4210968171 @default.
- W4386287563 cites W4237508974 @default.
- W4386287563 cites W4238160257 @default.
- W4386287563 cites W4238783456 @default.
- W4386287563 cites W4244296837 @default.
- W4386287563 doi "https://doi.org/10.1002/9781119853923.ch17" @default.
- W4386287563 hasPublicationYear "2023" @default.
- W4386287563 type Work @default.
- W4386287563 citedByCount "0" @default.
- W4386287563 crossrefType "other" @default.
- W4386287563 hasAuthorship W4386287563A5016027781 @default.
- W4386287563 hasAuthorship W4386287563A5045235557 @default.
- W4386287563 hasAuthorship W4386287563A5056184039 @default.
- W4386287563 hasConcept C119857082 @default.
- W4386287563 hasConcept C121332964 @default.
- W4386287563 hasConcept C121864883 @default.
- W4386287563 hasConcept C12362212 @default.
- W4386287563 hasConcept C135889238 @default.
- W4386287563 hasConcept C154945302 @default.
- W4386287563 hasConcept C158622935 @default.
- W4386287563 hasConcept C190470478 @default.
- W4386287563 hasConcept C202444582 @default.
- W4386287563 hasConcept C28826006 @default.
- W4386287563 hasConcept C33923547 @default.
- W4386287563 hasConcept C37914503 @default.
- W4386287563 hasConcept C41008148 @default.
- W4386287563 hasConcept C62520636 @default.
- W4386287563 hasConcept C74650414 @default.
- W4386287563 hasConcept C82706917 @default.
- W4386287563 hasConceptScore W4386287563C119857082 @default.
- W4386287563 hasConceptScore W4386287563C121332964 @default.
- W4386287563 hasConceptScore W4386287563C121864883 @default.
- W4386287563 hasConceptScore W4386287563C12362212 @default.
- W4386287563 hasConceptScore W4386287563C135889238 @default.
- W4386287563 hasConceptScore W4386287563C154945302 @default.
- W4386287563 hasConceptScore W4386287563C158622935 @default.
- W4386287563 hasConceptScore W4386287563C190470478 @default.
- W4386287563 hasConceptScore W4386287563C202444582 @default.
- W4386287563 hasConceptScore W4386287563C28826006 @default.
- W4386287563 hasConceptScore W4386287563C33923547 @default.
- W4386287563 hasConceptScore W4386287563C37914503 @default.
- W4386287563 hasConceptScore W4386287563C41008148 @default.
- W4386287563 hasConceptScore W4386287563C62520636 @default.
- W4386287563 hasConceptScore W4386287563C74650414 @default.
- W4386287563 hasConceptScore W4386287563C82706917 @default.
- W4386287563 hasLocation W43862875631 @default.