Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386291255> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4386291255 endingPage "1556" @default.
- W4386291255 startingPage "1552" @default.
- W4386291255 abstract "Fine Metal Mask (FMM) is the core technology of the evaporation process (EV) in manufacturing AMOLED panels [1]. The FMM made by the welding process. As the AMOLED's resolution becomes higher, the FMM becomes thinner, and the inspection system for securing the welding reliability becomes an issue in the FMM manufacturing process. Currently, inspection is conducted manually on random samples thus it is impossible to inspect all welds. In this study, the red‐dot labeled image training model was developed to automatically classify and determine weld defects, thereby enhancing the detection consistency of welds. This paper applies weld‐defect‐qualification‐function based on deep learning for FMM mass production process. The ‘Red‐dot labeled image training method' draws a red point in the center of the weld and separates the red‐channels. The separated channels are used as labeled images for learning. The problem is that if the model learns the welds directly, a detection error that catches the wrong area occurs, and the welding area is not correctly cropped. Additionally, the image processing and OpenCV's contour are errors occur by the image's contrast or facility light condition. On the other hand, the weld area can be correctly cropped by the red‐dot training model, even only with 1 pixel. The effect of this technology is to solve the problem of defect leakage and deviation of workers resulting from the existing manual sampling inspection, and to make a consistent qualification and automatic full inspection based on the deep learning model. Through this paper, the problem of full‐automation‐inspection, which was not possible in the past, is solved and the foundation of the inspection technology applicable to mass production is established." @default.
- W4386291255 created "2023-08-31" @default.
- W4386291255 creator A5092718375 @default.
- W4386291255 date "2023-06-01" @default.
- W4386291255 modified "2023-09-30" @default.
- W4386291255 title "P‐99: Development of Deep Learning Models for FMM Welding Point Qualification" @default.
- W4386291255 cites W2112796928 @default.
- W4386291255 doi "https://doi.org/10.1002/sdtp.16888" @default.
- W4386291255 hasPublicationYear "2023" @default.
- W4386291255 type Work @default.
- W4386291255 citedByCount "0" @default.
- W4386291255 crossrefType "journal-article" @default.
- W4386291255 hasAuthorship W4386291255A5092718375 @default.
- W4386291255 hasConcept C108583219 @default.
- W4386291255 hasConcept C111919701 @default.
- W4386291255 hasConcept C121332964 @default.
- W4386291255 hasConcept C127413603 @default.
- W4386291255 hasConcept C154945302 @default.
- W4386291255 hasConcept C160633673 @default.
- W4386291255 hasConcept C163258240 @default.
- W4386291255 hasConcept C164830781 @default.
- W4386291255 hasConcept C19474535 @default.
- W4386291255 hasConcept C2524010 @default.
- W4386291255 hasConcept C28719098 @default.
- W4386291255 hasConcept C31972630 @default.
- W4386291255 hasConcept C33923547 @default.
- W4386291255 hasConcept C41008148 @default.
- W4386291255 hasConcept C43214815 @default.
- W4386291255 hasConcept C62520636 @default.
- W4386291255 hasConcept C78519656 @default.
- W4386291255 hasConcept C98045186 @default.
- W4386291255 hasConceptScore W4386291255C108583219 @default.
- W4386291255 hasConceptScore W4386291255C111919701 @default.
- W4386291255 hasConceptScore W4386291255C121332964 @default.
- W4386291255 hasConceptScore W4386291255C127413603 @default.
- W4386291255 hasConceptScore W4386291255C154945302 @default.
- W4386291255 hasConceptScore W4386291255C160633673 @default.
- W4386291255 hasConceptScore W4386291255C163258240 @default.
- W4386291255 hasConceptScore W4386291255C164830781 @default.
- W4386291255 hasConceptScore W4386291255C19474535 @default.
- W4386291255 hasConceptScore W4386291255C2524010 @default.
- W4386291255 hasConceptScore W4386291255C28719098 @default.
- W4386291255 hasConceptScore W4386291255C31972630 @default.
- W4386291255 hasConceptScore W4386291255C33923547 @default.
- W4386291255 hasConceptScore W4386291255C41008148 @default.
- W4386291255 hasConceptScore W4386291255C43214815 @default.
- W4386291255 hasConceptScore W4386291255C62520636 @default.
- W4386291255 hasConceptScore W4386291255C78519656 @default.
- W4386291255 hasConceptScore W4386291255C98045186 @default.
- W4386291255 hasIssue "1" @default.
- W4386291255 hasLocation W43862912551 @default.
- W4386291255 hasOpenAccess W4386291255 @default.
- W4386291255 hasPrimaryLocation W43862912551 @default.
- W4386291255 hasRelatedWork W121273120 @default.
- W4386291255 hasRelatedWork W2002009170 @default.
- W4386291255 hasRelatedWork W2034462085 @default.
- W4386291255 hasRelatedWork W2141888456 @default.
- W4386291255 hasRelatedWork W2164918837 @default.
- W4386291255 hasRelatedWork W2337415362 @default.
- W4386291255 hasRelatedWork W2740820121 @default.
- W4386291255 hasRelatedWork W3159920843 @default.
- W4386291255 hasRelatedWork W317572212 @default.
- W4386291255 hasRelatedWork W4312857205 @default.
- W4386291255 hasVolume "54" @default.
- W4386291255 isParatext "false" @default.
- W4386291255 isRetracted "false" @default.
- W4386291255 workType "article" @default.