Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386292024> ?p ?o ?g. }
- W4386292024 abstract "Abstract Purpose 2-[ 18 F]FDG PET/CT plays an important role in the management of pulmonary nodules. Convolutional neural networks (CNNs) automatically learn features from images and have the potential to improve the discrimination between malignant and benign pulmonary nodules. The purpose of this study was to develop and validate a CNN model for classification of pulmonary nodules from 2-[ 18 F]FDG PET images. Methods One hundred thirteen participants were retrospectively selected. One nodule per participant. The 2-[ 18 F]FDG PET images were preprocessed and annotated with the reference standard. The deep learning experiment entailed random data splitting in five sets. A test set was held out for evaluation of the final model. Four-fold cross-validation was performed from the remaining sets for training and evaluating a set of candidate models and for selecting the final model. Models of three types of 3D CNNs architectures were trained from random weight initialization (Stacked 3D CNN, VGG-like and Inception-v2-like models) both in original and augmented datasets. Transfer learning, from ImageNet with ResNet-50, was also used. Results The final model (Stacked 3D CNN model) obtained an area under the ROC curve of 0.8385 (95% CI: 0.6455–1.0000) in the test set. The model had a sensibility of 80.00%, a specificity of 69.23% and an accuracy of 73.91%, in the test set, for an optimised decision threshold that assigns a higher cost to false negatives. Conclusion A 3D CNN model was effective at distinguishing benign from malignant pulmonary nodules in 2-[ 18 F]FDG PET images." @default.
- W4386292024 created "2023-08-31" @default.
- W4386292024 creator A5013827007 @default.
- W4386292024 creator A5031558815 @default.
- W4386292024 creator A5076893204 @default.
- W4386292024 date "2023-08-30" @default.
- W4386292024 modified "2023-10-17" @default.
- W4386292024 title "Classification of Pulmonary Nodules in 2-[18F]FDG PET/CT Images with a 3D Convolutional Neural Network" @default.
- W4386292024 cites W130099911 @default.
- W4386292024 cites W1829632160 @default.
- W4386292024 cites W1970192977 @default.
- W4386292024 cites W2006617902 @default.
- W4386292024 cites W2013745961 @default.
- W4386292024 cites W2026616100 @default.
- W4386292024 cites W2051269613 @default.
- W4386292024 cites W2066973160 @default.
- W4386292024 cites W2077658246 @default.
- W4386292024 cites W2077663753 @default.
- W4386292024 cites W2112971584 @default.
- W4386292024 cites W2149298154 @default.
- W4386292024 cites W2194775991 @default.
- W4386292024 cites W2268116731 @default.
- W4386292024 cites W2281177633 @default.
- W4386292024 cites W2282156262 @default.
- W4386292024 cites W2328176404 @default.
- W4386292024 cites W2395579298 @default.
- W4386292024 cites W2475566557 @default.
- W4386292024 cites W2515969222 @default.
- W4386292024 cites W2531390601 @default.
- W4386292024 cites W2580767461 @default.
- W4386292024 cites W2581082771 @default.
- W4386292024 cites W2594318146 @default.
- W4386292024 cites W2772723798 @default.
- W4386292024 cites W2783212946 @default.
- W4386292024 cites W2788633781 @default.
- W4386292024 cites W2805773775 @default.
- W4386292024 cites W2886281300 @default.
- W4386292024 cites W2901954625 @default.
- W4386292024 cites W2919115771 @default.
- W4386292024 cites W2919582241 @default.
- W4386292024 cites W2946185430 @default.
- W4386292024 cites W2954296981 @default.
- W4386292024 cites W2954996726 @default.
- W4386292024 cites W2962949934 @default.
- W4386292024 cites W2964702610 @default.
- W4386292024 cites W2967473922 @default.
- W4386292024 cites W2997650689 @default.
- W4386292024 cites W2998789541 @default.
- W4386292024 cites W3010006146 @default.
- W4386292024 cites W3016078995 @default.
- W4386292024 cites W3016108562 @default.
- W4386292024 cites W3048173156 @default.
- W4386292024 cites W3086275492 @default.
- W4386292024 cites W3100321043 @default.
- W4386292024 cites W3101398262 @default.
- W4386292024 cites W3155216088 @default.
- W4386292024 cites W3156011032 @default.
- W4386292024 cites W3185043567 @default.
- W4386292024 cites W3202063386 @default.
- W4386292024 cites W3208123223 @default.
- W4386292024 cites W3208129528 @default.
- W4386292024 cites W3212050879 @default.
- W4386292024 cites W4200221122 @default.
- W4386292024 cites W4220979973 @default.
- W4386292024 cites W4283657694 @default.
- W4386292024 cites W4311866672 @default.
- W4386292024 doi "https://doi.org/10.1007/s13139-023-00821-6" @default.
- W4386292024 hasPublicationYear "2023" @default.
- W4386292024 type Work @default.
- W4386292024 citedByCount "0" @default.
- W4386292024 crossrefType "journal-article" @default.
- W4386292024 hasAuthorship W4386292024A5013827007 @default.
- W4386292024 hasAuthorship W4386292024A5031558815 @default.
- W4386292024 hasAuthorship W4386292024A5076893204 @default.
- W4386292024 hasBestOaLocation W43862920241 @default.
- W4386292024 hasConcept C108583219 @default.
- W4386292024 hasConcept C114466953 @default.
- W4386292024 hasConcept C150899416 @default.
- W4386292024 hasConcept C153180895 @default.
- W4386292024 hasConcept C154945302 @default.
- W4386292024 hasConcept C169903167 @default.
- W4386292024 hasConcept C177264268 @default.
- W4386292024 hasConcept C199360897 @default.
- W4386292024 hasConcept C2989005 @default.
- W4386292024 hasConcept C41008148 @default.
- W4386292024 hasConcept C51632099 @default.
- W4386292024 hasConcept C58489278 @default.
- W4386292024 hasConcept C71924100 @default.
- W4386292024 hasConcept C81363708 @default.
- W4386292024 hasConceptScore W4386292024C108583219 @default.
- W4386292024 hasConceptScore W4386292024C114466953 @default.
- W4386292024 hasConceptScore W4386292024C150899416 @default.
- W4386292024 hasConceptScore W4386292024C153180895 @default.
- W4386292024 hasConceptScore W4386292024C154945302 @default.
- W4386292024 hasConceptScore W4386292024C169903167 @default.
- W4386292024 hasConceptScore W4386292024C177264268 @default.
- W4386292024 hasConceptScore W4386292024C199360897 @default.
- W4386292024 hasConceptScore W4386292024C2989005 @default.
- W4386292024 hasConceptScore W4386292024C41008148 @default.
- W4386292024 hasConceptScore W4386292024C51632099 @default.