Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386296054> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4386296054 endingPage "100919" @default.
- W4386296054 startingPage "100919" @default.
- W4386296054 abstract "Smart cities rely heavily on Internet of Things (IoT) technology, which enables automation services through interconnected IoT devices. However, the widespread use of IoT applications in smart cities has resulted in security and privacy concerns that must be addressed to protect sensitive data. To safeguard smart cities from cyber attacks, learning theory-based automated attack-detection methods must be adopted. Various techniques have been proposed in the literature to create effective models for identifying IoT attacks. However, the majority of IoT detection algorithms have focused on only a few types of IoT attacks, and most IoT threat detection systems have used black-box deep learning models that lack interpretability to support their forecasts. This research aims to detect several types of large-scale attacks on IoT devices using the Extreme Gradient Boosting (XG-Boost) classifier and Explainable Artificial Intelligence (XAI) approaches. The proposed method not only improves the model’s performance but also increases trust in the model. The results of the experimental study on the IOTD20 dataset and XAI evaluation of each feature’s contribution to the model demonstrate that the proposed model can efficiently identify malicious attacks and threats, reducing IoT cybersecurity threats in smart cities." @default.
- W4386296054 created "2023-08-31" @default.
- W4386296054 creator A5011554149 @default.
- W4386296054 creator A5023424929 @default.
- W4386296054 creator A5048041965 @default.
- W4386296054 creator A5051981813 @default.
- W4386296054 creator A5064030339 @default.
- W4386296054 creator A5085933596 @default.
- W4386296054 date "2023-12-01" @default.
- W4386296054 modified "2023-10-01" @default.
- W4386296054 title "Demystifying machine learning models of massive IoT attack detection with Explainable AI for sustainable and secure future smart cities" @default.
- W4386296054 cites W1969576680 @default.
- W4386296054 cites W2973862992 @default.
- W4386296054 cites W2999221729 @default.
- W4386296054 cites W3006526650 @default.
- W4386296054 cites W3094105990 @default.
- W4386296054 cites W3112343206 @default.
- W4386296054 cites W3121453273 @default.
- W4386296054 cites W3135079228 @default.
- W4386296054 cites W3184595504 @default.
- W4386296054 cites W3198054520 @default.
- W4386296054 cites W3216660278 @default.
- W4386296054 cites W3216826992 @default.
- W4386296054 cites W4200090997 @default.
- W4386296054 cites W4210659135 @default.
- W4386296054 cites W4225338066 @default.
- W4386296054 cites W4309360432 @default.
- W4386296054 doi "https://doi.org/10.1016/j.iot.2023.100919" @default.
- W4386296054 hasPublicationYear "2023" @default.
- W4386296054 type Work @default.
- W4386296054 citedByCount "0" @default.
- W4386296054 crossrefType "journal-article" @default.
- W4386296054 hasAuthorship W4386296054A5011554149 @default.
- W4386296054 hasAuthorship W4386296054A5023424929 @default.
- W4386296054 hasAuthorship W4386296054A5048041965 @default.
- W4386296054 hasAuthorship W4386296054A5051981813 @default.
- W4386296054 hasAuthorship W4386296054A5064030339 @default.
- W4386296054 hasAuthorship W4386296054A5085933596 @default.
- W4386296054 hasConcept C119857082 @default.
- W4386296054 hasConcept C154945302 @default.
- W4386296054 hasConcept C2781067378 @default.
- W4386296054 hasConcept C38652104 @default.
- W4386296054 hasConcept C41008148 @default.
- W4386296054 hasConcept C81860439 @default.
- W4386296054 hasConceptScore W4386296054C119857082 @default.
- W4386296054 hasConceptScore W4386296054C154945302 @default.
- W4386296054 hasConceptScore W4386296054C2781067378 @default.
- W4386296054 hasConceptScore W4386296054C38652104 @default.
- W4386296054 hasConceptScore W4386296054C41008148 @default.
- W4386296054 hasConceptScore W4386296054C81860439 @default.
- W4386296054 hasLocation W43862960541 @default.
- W4386296054 hasOpenAccess W4386296054 @default.
- W4386296054 hasPrimaryLocation W43862960541 @default.
- W4386296054 hasRelatedWork W1986582023 @default.
- W4386296054 hasRelatedWork W3006943036 @default.
- W4386296054 hasRelatedWork W4200511449 @default.
- W4386296054 hasRelatedWork W4206534706 @default.
- W4386296054 hasRelatedWork W4229079080 @default.
- W4386296054 hasRelatedWork W4299487748 @default.
- W4386296054 hasRelatedWork W4385767940 @default.
- W4386296054 hasRelatedWork W4385957992 @default.
- W4386296054 hasRelatedWork W4385965371 @default.
- W4386296054 hasRelatedWork W4386025632 @default.
- W4386296054 hasVolume "24" @default.
- W4386296054 isParatext "false" @default.
- W4386296054 isRetracted "false" @default.
- W4386296054 workType "article" @default.