Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386300775> ?p ?o ?g. }
- W4386300775 endingPage "105368" @default.
- W4386300775 startingPage "105368" @default.
- W4386300775 abstract "Chronic kidney disease is a severe health problem that affects people all over the world, particularly in South Asia. Therefore, proper diagnosis and treatment are required as early as possible. The main goal of this study is to detect the presence or absence of CKD in the human body utilizing a variety of features grasped from a few medical tests. This paper has focused on eight ensemble learning methods for diagnosing CKD on the UCI machine learning datasets. The datasets have been fixed by imputing the missing values using the MICE imputation method and handling the imbalance properties using the borderline SVMSMOTE method to improve the performance of classifiers. Moreover, recursive feature elimination and the boruta method have been used to find the most significant features and reduce the compilation time, while the hyperparameter tuning technique was used to raise the performance of classifiers and get optimal solutions. Taking the most significant feature into consideration, RFE outperformed boruta and selected only 50% of the total features. Moreover, various performance matrices are used to find the best competent classifiers for detecting CKD. LightGBM outperformed state-of-the-art and other ensemble methods with the lowest compilation time and highest accuracy. Based on experimental findings, the proposed method achieved the highest average of 99.75% accuracy, 99.40% precision, 99.41% recall, 99.61% F-measure and 99.57% AUC-ROC. Moreover, our proposed method rises the average detection rate by 5.64%, 1%, 2.04%, 8.63%,1.99%, 2.84%, 2.42% and 4.76%, respectively, in comparison with different approaches performing on the same dataset. Experiments show that our suggested method can identify CKD more precisely than the most recent methods." @default.
- W4386300775 created "2023-08-31" @default.
- W4386300775 creator A5008580378 @default.
- W4386300775 creator A5039813871 @default.
- W4386300775 creator A5074987570 @default.
- W4386300775 date "2024-01-01" @default.
- W4386300775 modified "2023-10-16" @default.
- W4386300775 title "Machine learning models for chronic kidney disease diagnosis and prediction" @default.
- W4386300775 cites W1700449338 @default.
- W4386300775 cites W1988790447 @default.
- W4386300775 cites W2022897444 @default.
- W4386300775 cites W2070493638 @default.
- W4386300775 cites W2085134546 @default.
- W4386300775 cites W2118020555 @default.
- W4386300775 cites W2132791018 @default.
- W4386300775 cites W2143426320 @default.
- W4386300775 cites W2148143831 @default.
- W4386300775 cites W2168508521 @default.
- W4386300775 cites W2475875369 @default.
- W4386300775 cites W2511377368 @default.
- W4386300775 cites W2779895460 @default.
- W4386300775 cites W2782914308 @default.
- W4386300775 cites W2802379619 @default.
- W4386300775 cites W28412257 @default.
- W4386300775 cites W2897733270 @default.
- W4386300775 cites W2911964244 @default.
- W4386300775 cites W2940010972 @default.
- W4386300775 cites W2940596626 @default.
- W4386300775 cites W2945048168 @default.
- W4386300775 cites W2955086442 @default.
- W4386300775 cites W2982215737 @default.
- W4386300775 cites W2989868186 @default.
- W4386300775 cites W2997177758 @default.
- W4386300775 cites W3005455537 @default.
- W4386300775 cites W3005886042 @default.
- W4386300775 cites W3011408237 @default.
- W4386300775 cites W3102476541 @default.
- W4386300775 cites W3109549323 @default.
- W4386300775 cites W3120683583 @default.
- W4386300775 cites W3125584267 @default.
- W4386300775 cites W3127397372 @default.
- W4386300775 cites W3128751343 @default.
- W4386300775 cites W3155449950 @default.
- W4386300775 cites W3172921504 @default.
- W4386300775 cites W3191630664 @default.
- W4386300775 cites W3206405140 @default.
- W4386300775 cites W3214439486 @default.
- W4386300775 cites W3215235441 @default.
- W4386300775 cites W3217121273 @default.
- W4386300775 cites W3217392036 @default.
- W4386300775 cites W4200420294 @default.
- W4386300775 cites W4206512547 @default.
- W4386300775 cites W4212883601 @default.
- W4386300775 cites W4283772930 @default.
- W4386300775 cites W4293420779 @default.
- W4386300775 cites W4295797491 @default.
- W4386300775 doi "https://doi.org/10.1016/j.bspc.2023.105368" @default.
- W4386300775 hasPublicationYear "2024" @default.
- W4386300775 type Work @default.
- W4386300775 citedByCount "0" @default.
- W4386300775 crossrefType "journal-article" @default.
- W4386300775 hasAuthorship W4386300775A5008580378 @default.
- W4386300775 hasAuthorship W4386300775A5039813871 @default.
- W4386300775 hasAuthorship W4386300775A5074987570 @default.
- W4386300775 hasConcept C105795698 @default.
- W4386300775 hasConcept C119857082 @default.
- W4386300775 hasConcept C119898033 @default.
- W4386300775 hasConcept C124101348 @default.
- W4386300775 hasConcept C126322002 @default.
- W4386300775 hasConcept C138885662 @default.
- W4386300775 hasConcept C141404830 @default.
- W4386300775 hasConcept C153180895 @default.
- W4386300775 hasConcept C154945302 @default.
- W4386300775 hasConcept C2776401178 @default.
- W4386300775 hasConcept C2778653478 @default.
- W4386300775 hasConcept C33923547 @default.
- W4386300775 hasConcept C41008148 @default.
- W4386300775 hasConcept C41895202 @default.
- W4386300775 hasConcept C45942800 @default.
- W4386300775 hasConcept C58041806 @default.
- W4386300775 hasConcept C71924100 @default.
- W4386300775 hasConcept C8642999 @default.
- W4386300775 hasConcept C9357733 @default.
- W4386300775 hasConcept C95623464 @default.
- W4386300775 hasConceptScore W4386300775C105795698 @default.
- W4386300775 hasConceptScore W4386300775C119857082 @default.
- W4386300775 hasConceptScore W4386300775C119898033 @default.
- W4386300775 hasConceptScore W4386300775C124101348 @default.
- W4386300775 hasConceptScore W4386300775C126322002 @default.
- W4386300775 hasConceptScore W4386300775C138885662 @default.
- W4386300775 hasConceptScore W4386300775C141404830 @default.
- W4386300775 hasConceptScore W4386300775C153180895 @default.
- W4386300775 hasConceptScore W4386300775C154945302 @default.
- W4386300775 hasConceptScore W4386300775C2776401178 @default.
- W4386300775 hasConceptScore W4386300775C2778653478 @default.
- W4386300775 hasConceptScore W4386300775C33923547 @default.
- W4386300775 hasConceptScore W4386300775C41008148 @default.
- W4386300775 hasConceptScore W4386300775C41895202 @default.