Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386301102> ?p ?o ?g. }
- W4386301102 endingPage "105367" @default.
- W4386301102 startingPage "105367" @default.
- W4386301102 abstract "This paper presents a novel approach for diagnosing Community-Acquired Pneumonia (CAP) in children using single-channel photoplethysmography (PPG) using machine learning Traditional diagnostic methods (x-rays systems and blood tests) for pneumonia suffer from limitations e.g., unavailability in remote rural areas, time consumption, financial burden, and reliance on invasive procedures. This novel approach uses the PPG recording alone to generate accurate and rapid diagnoses of CAP in children that may facilitate healthcare practitioners in low-resource clinical settings in future. A cross-sectional study was carried out to collect the PPG recordings of 67 paediatric participants (31 CAP and 36 healthy). Five different machine learning classifiers namely Fine Decision tree, Linear Discriminant Analysis, Weighted K Nearest Neighbour, Wide Neural Network, and Ensemble of Bagged Trees using eight PPG signal features were employed. Using weighted KNN we predicted 9 out of 10 test subjects correctly. These results demonstrate the potential of the system to improve clinical decision-making and patient outcomes since despite the thriving advancements in healthcare paediatric pneumonia remains a major health concern." @default.
- W4386301102 created "2023-08-31" @default.
- W4386301102 creator A5000576706 @default.
- W4386301102 creator A5003348035 @default.
- W4386301102 creator A5024474853 @default.
- W4386301102 creator A5038867313 @default.
- W4386301102 creator A5053233840 @default.
- W4386301102 date "2024-01-01" @default.
- W4386301102 modified "2023-10-01" @default.
- W4386301102 title "Diagnosis of Community-Acquired pneumonia in children using photoplethysmography and Machine learning-based classifier" @default.
- W4386301102 cites W1250851605 @default.
- W4386301102 cites W1991816999 @default.
- W4386301102 cites W2014825503 @default.
- W4386301102 cites W2064953183 @default.
- W4386301102 cites W2065343838 @default.
- W4386301102 cites W2069375584 @default.
- W4386301102 cites W2072885342 @default.
- W4386301102 cites W2100474411 @default.
- W4386301102 cites W2158524254 @default.
- W4386301102 cites W2312669029 @default.
- W4386301102 cites W2522264526 @default.
- W4386301102 cites W2562498401 @default.
- W4386301102 cites W2588047795 @default.
- W4386301102 cites W2746698216 @default.
- W4386301102 cites W2755336558 @default.
- W4386301102 cites W2794106486 @default.
- W4386301102 cites W2798205470 @default.
- W4386301102 cites W2885580178 @default.
- W4386301102 cites W2894890204 @default.
- W4386301102 cites W2897468376 @default.
- W4386301102 cites W2912292287 @default.
- W4386301102 cites W2921177942 @default.
- W4386301102 cites W2921358727 @default.
- W4386301102 cites W2952605131 @default.
- W4386301102 cites W2953439757 @default.
- W4386301102 cites W2976649047 @default.
- W4386301102 cites W2978928985 @default.
- W4386301102 cites W2980521753 @default.
- W4386301102 cites W2996317882 @default.
- W4386301102 cites W3005433150 @default.
- W4386301102 cites W3006649679 @default.
- W4386301102 cites W3080731188 @default.
- W4386301102 cites W3104190197 @default.
- W4386301102 cites W3105837102 @default.
- W4386301102 cites W3109625451 @default.
- W4386301102 cites W3112298737 @default.
- W4386301102 cites W3113161813 @default.
- W4386301102 cites W3207944648 @default.
- W4386301102 cites W351505148 @default.
- W4386301102 cites W4210652228 @default.
- W4386301102 cites W4214602270 @default.
- W4386301102 cites W4214928440 @default.
- W4386301102 cites W4221007892 @default.
- W4386301102 cites W4226193028 @default.
- W4386301102 cites W4241184565 @default.
- W4386301102 cites W4280553409 @default.
- W4386301102 cites W4280627315 @default.
- W4386301102 cites W4294666807 @default.
- W4386301102 cites W4296218719 @default.
- W4386301102 cites W4296518655 @default.
- W4386301102 cites W4328051042 @default.
- W4386301102 doi "https://doi.org/10.1016/j.bspc.2023.105367" @default.
- W4386301102 hasPublicationYear "2024" @default.
- W4386301102 type Work @default.
- W4386301102 citedByCount "0" @default.
- W4386301102 crossrefType "journal-article" @default.
- W4386301102 hasAuthorship W4386301102A5000576706 @default.
- W4386301102 hasAuthorship W4386301102A5003348035 @default.
- W4386301102 hasAuthorship W4386301102A5024474853 @default.
- W4386301102 hasAuthorship W4386301102A5038867313 @default.
- W4386301102 hasAuthorship W4386301102A5053233840 @default.
- W4386301102 hasBestOaLocation W43863011021 @default.
- W4386301102 hasConcept C105795698 @default.
- W4386301102 hasConcept C116390426 @default.
- W4386301102 hasConcept C119857082 @default.
- W4386301102 hasConcept C126322002 @default.
- W4386301102 hasConcept C142724271 @default.
- W4386301102 hasConcept C154945302 @default.
- W4386301102 hasConcept C160735492 @default.
- W4386301102 hasConcept C162324750 @default.
- W4386301102 hasConcept C2776102371 @default.
- W4386301102 hasConcept C2777914695 @default.
- W4386301102 hasConcept C2780505938 @default.
- W4386301102 hasConcept C33923547 @default.
- W4386301102 hasConcept C41008148 @default.
- W4386301102 hasConcept C50522688 @default.
- W4386301102 hasConcept C534262118 @default.
- W4386301102 hasConcept C555944384 @default.
- W4386301102 hasConcept C71924100 @default.
- W4386301102 hasConcept C76155785 @default.
- W4386301102 hasConcept C84525736 @default.
- W4386301102 hasConceptScore W4386301102C105795698 @default.
- W4386301102 hasConceptScore W4386301102C116390426 @default.
- W4386301102 hasConceptScore W4386301102C119857082 @default.
- W4386301102 hasConceptScore W4386301102C126322002 @default.
- W4386301102 hasConceptScore W4386301102C142724271 @default.
- W4386301102 hasConceptScore W4386301102C154945302 @default.
- W4386301102 hasConceptScore W4386301102C160735492 @default.