Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386301103> ?p ?o ?g. }
- W4386301103 endingPage "108579" @default.
- W4386301103 startingPage "108579" @default.
- W4386301103 abstract "Convenient and accurate state-of-health (SOH) estimation of lithium-ion batteries (LIBs) is crucial for the security of energy storage systems. However, it is a challenging task to estimate the SOH of LIB due to complex cycling conditions and limited training data. The inputs of most existing methods cannot always be satisfied under complex cycle conditions, as cycle conditions may change anytime, especially during dynamic discharge processes. Thus, we propose a new end-to-end SOH estimation method based on relaxation voltage that is not dependent on specific cycling conditions. Specifically, the relaxation voltage profiles at the end of fully charging are input to a one-dimensional convolutional neural network (CNN) to estimate SOH directly. Transfer learning is adopted to leverage the source domain knowledge to the target domain to solve the issue of limited data. Moreover, the most promising CNN hyperparameters are determined automatically by the Bayesian optimization algorithm (BOA) during the pre-training and transfer learning. The accuracy and robustness of the proposed method are verified on two publicly available datasets consisting of 121 and 4 commercial cells, respectively, with a real-driving discharge profile. The root-mean-square errors of the proposed method are 0.0128 and 0.0092, respectively, with only 1.5 % and 10 % training data from the two target domains. The method has a high potential for online applications with preferable accuracy and computational performance. Our work highlights the effectiveness and generalizability of the end-to-end LIBs SOH estimation method based on easily accessible relaxation voltage profiles." @default.
- W4386301103 created "2023-08-31" @default.
- W4386301103 creator A5004574678 @default.
- W4386301103 creator A5014014197 @default.
- W4386301103 creator A5040651707 @default.
- W4386301103 creator A5047138391 @default.
- W4386301103 date "2023-12-01" @default.
- W4386301103 modified "2023-09-27" @default.
- W4386301103 title "Voltage relaxation-based state-of-health estimation of lithium-ion batteries using convolutional neural networks and transfer learning" @default.
- W4386301103 cites W2078279667 @default.
- W4386301103 cites W2085554264 @default.
- W4386301103 cites W2089525884 @default.
- W4386301103 cites W2122825543 @default.
- W4386301103 cites W2165698076 @default.
- W4386301103 cites W2280718877 @default.
- W4386301103 cites W2746868218 @default.
- W4386301103 cites W2789625876 @default.
- W4386301103 cites W2790625295 @default.
- W4386301103 cites W2793702125 @default.
- W4386301103 cites W2805870878 @default.
- W4386301103 cites W2895147187 @default.
- W4386301103 cites W2896294159 @default.
- W4386301103 cites W2914840936 @default.
- W4386301103 cites W2924382816 @default.
- W4386301103 cites W2937223496 @default.
- W4386301103 cites W2944713305 @default.
- W4386301103 cites W2957056027 @default.
- W4386301103 cites W2996610370 @default.
- W4386301103 cites W2999951339 @default.
- W4386301103 cites W3000175441 @default.
- W4386301103 cites W3005944535 @default.
- W4386301103 cites W3007217854 @default.
- W4386301103 cites W3011952957 @default.
- W4386301103 cites W3026693044 @default.
- W4386301103 cites W3040694753 @default.
- W4386301103 cites W3045004532 @default.
- W4386301103 cites W3047827241 @default.
- W4386301103 cites W3074222438 @default.
- W4386301103 cites W3096459816 @default.
- W4386301103 cites W3171353223 @default.
- W4386301103 cites W3179726623 @default.
- W4386301103 cites W3194214662 @default.
- W4386301103 cites W3212536714 @default.
- W4386301103 cites W3215804120 @default.
- W4386301103 cites W4200021389 @default.
- W4386301103 cites W4214662675 @default.
- W4386301103 cites W4214691593 @default.
- W4386301103 cites W4220998736 @default.
- W4386301103 cites W4221108419 @default.
- W4386301103 cites W4224297920 @default.
- W4386301103 cites W4224947065 @default.
- W4386301103 cites W4283790508 @default.
- W4386301103 cites W4285043289 @default.
- W4386301103 cites W4285128407 @default.
- W4386301103 cites W4309595898 @default.
- W4386301103 cites W4313592887 @default.
- W4386301103 doi "https://doi.org/10.1016/j.est.2023.108579" @default.
- W4386301103 hasPublicationYear "2023" @default.
- W4386301103 type Work @default.
- W4386301103 citedByCount "0" @default.
- W4386301103 crossrefType "journal-article" @default.
- W4386301103 hasAuthorship W4386301103A5004574678 @default.
- W4386301103 hasAuthorship W4386301103A5014014197 @default.
- W4386301103 hasAuthorship W4386301103A5040651707 @default.
- W4386301103 hasAuthorship W4386301103A5047138391 @default.
- W4386301103 hasConcept C104317684 @default.
- W4386301103 hasConcept C119599485 @default.
- W4386301103 hasConcept C119857082 @default.
- W4386301103 hasConcept C121332964 @default.
- W4386301103 hasConcept C127413603 @default.
- W4386301103 hasConcept C150899416 @default.
- W4386301103 hasConcept C153083717 @default.
- W4386301103 hasConcept C154945302 @default.
- W4386301103 hasConcept C163258240 @default.
- W4386301103 hasConcept C165801399 @default.
- W4386301103 hasConcept C185592680 @default.
- W4386301103 hasConcept C2777294910 @default.
- W4386301103 hasConcept C41008148 @default.
- W4386301103 hasConcept C55493867 @default.
- W4386301103 hasConcept C555008776 @default.
- W4386301103 hasConcept C62520636 @default.
- W4386301103 hasConcept C63479239 @default.
- W4386301103 hasConcept C81363708 @default.
- W4386301103 hasConcept C8642999 @default.
- W4386301103 hasConceptScore W4386301103C104317684 @default.
- W4386301103 hasConceptScore W4386301103C119599485 @default.
- W4386301103 hasConceptScore W4386301103C119857082 @default.
- W4386301103 hasConceptScore W4386301103C121332964 @default.
- W4386301103 hasConceptScore W4386301103C127413603 @default.
- W4386301103 hasConceptScore W4386301103C150899416 @default.
- W4386301103 hasConceptScore W4386301103C153083717 @default.
- W4386301103 hasConceptScore W4386301103C154945302 @default.
- W4386301103 hasConceptScore W4386301103C163258240 @default.
- W4386301103 hasConceptScore W4386301103C165801399 @default.
- W4386301103 hasConceptScore W4386301103C185592680 @default.
- W4386301103 hasConceptScore W4386301103C2777294910 @default.
- W4386301103 hasConceptScore W4386301103C41008148 @default.
- W4386301103 hasConceptScore W4386301103C55493867 @default.