Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386307515> ?p ?o ?g. }
- W4386307515 endingPage "5658" @default.
- W4386307515 startingPage "5658" @default.
- W4386307515 abstract "Background: Sepsis, a life-threatening infection-induced inflammatory condition, has significant global health impacts. Timely detection is crucial for improving patient outcomes as sepsis can rapidly progress to severe forms. The application of machine learning (ML) and deep learning (DL) to predict sepsis using electronic health records (EHRs) has gained considerable attention for timely intervention. Methods: PubMed, IEEE Xplore, Google Scholar, and Scopus were searched for relevant studies. All studies that used ML/DL to detect or early-predict the onset of sepsis in the adult population using EHRs were considered. Data were extracted and analyzed from all studies that met the criteria and were also evaluated for their quality. Results: This systematic review examined 1942 articles, selecting 42 studies while adhering to strict criteria. The chosen studies were predominantly retrospective (n = 38) and spanned diverse geographic settings, with a focus on the United States. Different datasets, sepsis definitions, and prevalence rates were employed, necessitating data augmentation. Heterogeneous parameter utilization, diverse model distribution, and varying quality assessments were observed. Longitudinal data enabled early sepsis prediction, and quality criteria fulfillment varied, with inconsistent funding–article quality correlation. Conclusions: This systematic review underscores the significance of ML/DL methods for sepsis detection and early prediction through EHR data." @default.
- W4386307515 created "2023-09-01" @default.
- W4386307515 creator A5015063165 @default.
- W4386307515 creator A5064486960 @default.
- W4386307515 creator A5067478205 @default.
- W4386307515 creator A5074798146 @default.
- W4386307515 creator A5084025595 @default.
- W4386307515 creator A5092073603 @default.
- W4386307515 creator A5092637169 @default.
- W4386307515 date "2023-08-30" @default.
- W4386307515 modified "2023-09-30" @default.
- W4386307515 title "Machine Learning-Based Early Prediction of Sepsis Using Electronic Health Records: A Systematic Review" @default.
- W4386307515 cites W1943063538 @default.
- W4386307515 cites W1976430725 @default.
- W4386307515 cites W2041461587 @default.
- W4386307515 cites W2049927822 @default.
- W4386307515 cites W2098572294 @default.
- W4386307515 cites W2110182515 @default.
- W4386307515 cites W2129827480 @default.
- W4386307515 cites W2144589352 @default.
- W4386307515 cites W2151426785 @default.
- W4386307515 cites W2166822894 @default.
- W4386307515 cites W2280404143 @default.
- W4386307515 cites W2282181907 @default.
- W4386307515 cites W2372800617 @default.
- W4386307515 cites W2442246762 @default.
- W4386307515 cites W2514926717 @default.
- W4386307515 cites W2523834880 @default.
- W4386307515 cites W2580335324 @default.
- W4386307515 cites W2604972438 @default.
- W4386307515 cites W2750557731 @default.
- W4386307515 cites W2753278547 @default.
- W4386307515 cites W2766507324 @default.
- W4386307515 cites W2776803885 @default.
- W4386307515 cites W2786635213 @default.
- W4386307515 cites W2905123315 @default.
- W4386307515 cites W2905983446 @default.
- W4386307515 cites W2910910290 @default.
- W4386307515 cites W2912708252 @default.
- W4386307515 cites W2913977338 @default.
- W4386307515 cites W2940553617 @default.
- W4386307515 cites W2945543078 @default.
- W4386307515 cites W2954583151 @default.
- W4386307515 cites W2966678846 @default.
- W4386307515 cites W2968919852 @default.
- W4386307515 cites W2969225972 @default.
- W4386307515 cites W2972498478 @default.
- W4386307515 cites W2980177178 @default.
- W4386307515 cites W2981428249 @default.
- W4386307515 cites W2982105985 @default.
- W4386307515 cites W2985159277 @default.
- W4386307515 cites W2985990714 @default.
- W4386307515 cites W2992764683 @default.
- W4386307515 cites W2995282027 @default.
- W4386307515 cites W2998334852 @default.
- W4386307515 cites W2998853022 @default.
- W4386307515 cites W3000349893 @default.
- W4386307515 cites W3000385575 @default.
- W4386307515 cites W3008421095 @default.
- W4386307515 cites W3015460073 @default.
- W4386307515 cites W3026865292 @default.
- W4386307515 cites W3048074762 @default.
- W4386307515 cites W3048688409 @default.
- W4386307515 cites W3097666541 @default.
- W4386307515 cites W3099758890 @default.
- W4386307515 cites W3104711084 @default.
- W4386307515 cites W3123085258 @default.
- W4386307515 cites W3124926562 @default.
- W4386307515 cites W3130433021 @default.
- W4386307515 cites W3130868966 @default.
- W4386307515 cites W3131712583 @default.
- W4386307515 cites W3158067219 @default.
- W4386307515 cites W3171007518 @default.
- W4386307515 cites W3197574277 @default.
- W4386307515 cites W3202964273 @default.
- W4386307515 cites W3207351808 @default.
- W4386307515 cites W3210281784 @default.
- W4386307515 cites W4200334578 @default.
- W4386307515 cites W4200359273 @default.
- W4386307515 cites W4205585064 @default.
- W4386307515 cites W4212796095 @default.
- W4386307515 cites W4214822984 @default.
- W4386307515 cites W4220974227 @default.
- W4386307515 cites W4307836691 @default.
- W4386307515 cites W4310784069 @default.
- W4386307515 cites W4316810803 @default.
- W4386307515 cites W4321612076 @default.
- W4386307515 cites W4361282955 @default.
- W4386307515 cites W4366977859 @default.
- W4386307515 cites W655999930 @default.
- W4386307515 doi "https://doi.org/10.3390/jcm12175658" @default.
- W4386307515 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37685724" @default.
- W4386307515 hasPublicationYear "2023" @default.
- W4386307515 type Work @default.
- W4386307515 citedByCount "0" @default.
- W4386307515 crossrefType "journal-article" @default.
- W4386307515 hasAuthorship W4386307515A5015063165 @default.
- W4386307515 hasAuthorship W4386307515A5064486960 @default.