Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386307632> ?p ?o ?g. }
- W4386307632 abstract "We consider the cold-start task for new users of a recommender system whereby a new user is asked to rate a few items with the aim of quickly discovering the user’s preferences. This is a combinatorial stochastic learning task, and so difficult in general. In this paper we study the use of Monte Carlo Tree Search (MCTS) to dynamically select the sequence of items presented to a new user. We find that the MCTS-based cold-start approach is able to consistently quickly identify the preferences of a user with significantly higher accuracy than with either a decision-tree or a state of the art bandit-based approach without incurring higher regret i.e the learning performance is fundamentally superior to that of the state of the art. This boost in recommender accuracy is achieved in a computationally lightweight fashion. The MCTS approach is flexible in the sense that it can readily extended to incorporate different types of user feedback including explicit ratings, ranked comparisons and missing not at random data." @default.
- W4386307632 created "2023-09-01" @default.
- W4386307632 creator A5055479137 @default.
- W4386307632 creator A5086446911 @default.
- W4386307632 date "2023-08-31" @default.
- W4386307632 modified "2023-10-06" @default.
- W4386307632 title "User Cold-Start Learning In Recommender Systems Using Monte Carlo Tree Search" @default.
- W4386307632 cites W1504466744 @default.
- W4386307632 cites W2000519673 @default.
- W4386307632 cites W2013221919 @default.
- W4386307632 cites W2018571751 @default.
- W4386307632 cites W2062205231 @default.
- W4386307632 cites W2116206254 @default.
- W4386307632 cites W2126316555 @default.
- W4386307632 cites W2155201359 @default.
- W4386307632 cites W2167598575 @default.
- W4386307632 cites W2441269247 @default.
- W4386307632 cites W2605350416 @default.
- W4386307632 cites W2614028975 @default.
- W4386307632 cites W2752904570 @default.
- W4386307632 cites W2893359107 @default.
- W4386307632 cites W2898151875 @default.
- W4386307632 cites W2902325479 @default.
- W4386307632 cites W2962781798 @default.
- W4386307632 cites W2972862932 @default.
- W4386307632 cites W3114654929 @default.
- W4386307632 cites W3122725723 @default.
- W4386307632 cites W3123348991 @default.
- W4386307632 cites W3152516437 @default.
- W4386307632 cites W3164238513 @default.
- W4386307632 cites W3217161237 @default.
- W4386307632 cites W4200102205 @default.
- W4386307632 cites W4224293200 @default.
- W4386307632 cites W4294031701 @default.
- W4386307632 cites W4296604502 @default.
- W4386307632 doi "https://doi.org/10.1145/3618002" @default.
- W4386307632 hasPublicationYear "2023" @default.
- W4386307632 type Work @default.
- W4386307632 citedByCount "0" @default.
- W4386307632 crossrefType "journal-article" @default.
- W4386307632 hasAuthorship W4386307632A5055479137 @default.
- W4386307632 hasAuthorship W4386307632A5086446911 @default.
- W4386307632 hasBestOaLocation W43863076321 @default.
- W4386307632 hasConcept C105795698 @default.
- W4386307632 hasConcept C113174947 @default.
- W4386307632 hasConcept C119857082 @default.
- W4386307632 hasConcept C127413603 @default.
- W4386307632 hasConcept C134306372 @default.
- W4386307632 hasConcept C146978453 @default.
- W4386307632 hasConcept C154945302 @default.
- W4386307632 hasConcept C189430467 @default.
- W4386307632 hasConcept C19499675 @default.
- W4386307632 hasConcept C201995342 @default.
- W4386307632 hasConcept C23123220 @default.
- W4386307632 hasConcept C2778112365 @default.
- W4386307632 hasConcept C2778956030 @default.
- W4386307632 hasConcept C2780451532 @default.
- W4386307632 hasConcept C33923547 @default.
- W4386307632 hasConcept C41008148 @default.
- W4386307632 hasConcept C46149586 @default.
- W4386307632 hasConcept C50817715 @default.
- W4386307632 hasConcept C54355233 @default.
- W4386307632 hasConcept C557471498 @default.
- W4386307632 hasConcept C86037889 @default.
- W4386307632 hasConcept C86803240 @default.
- W4386307632 hasConceptScore W4386307632C105795698 @default.
- W4386307632 hasConceptScore W4386307632C113174947 @default.
- W4386307632 hasConceptScore W4386307632C119857082 @default.
- W4386307632 hasConceptScore W4386307632C127413603 @default.
- W4386307632 hasConceptScore W4386307632C134306372 @default.
- W4386307632 hasConceptScore W4386307632C146978453 @default.
- W4386307632 hasConceptScore W4386307632C154945302 @default.
- W4386307632 hasConceptScore W4386307632C189430467 @default.
- W4386307632 hasConceptScore W4386307632C19499675 @default.
- W4386307632 hasConceptScore W4386307632C201995342 @default.
- W4386307632 hasConceptScore W4386307632C23123220 @default.
- W4386307632 hasConceptScore W4386307632C2778112365 @default.
- W4386307632 hasConceptScore W4386307632C2778956030 @default.
- W4386307632 hasConceptScore W4386307632C2780451532 @default.
- W4386307632 hasConceptScore W4386307632C33923547 @default.
- W4386307632 hasConceptScore W4386307632C41008148 @default.
- W4386307632 hasConceptScore W4386307632C46149586 @default.
- W4386307632 hasConceptScore W4386307632C50817715 @default.
- W4386307632 hasConceptScore W4386307632C54355233 @default.
- W4386307632 hasConceptScore W4386307632C557471498 @default.
- W4386307632 hasConceptScore W4386307632C86037889 @default.
- W4386307632 hasConceptScore W4386307632C86803240 @default.
- W4386307632 hasLocation W43863076321 @default.
- W4386307632 hasOpenAccess W4386307632 @default.
- W4386307632 hasPrimaryLocation W43863076321 @default.
- W4386307632 hasRelatedWork W2061572266 @default.
- W4386307632 hasRelatedWork W2579748521 @default.
- W4386307632 hasRelatedWork W2899087886 @default.
- W4386307632 hasRelatedWork W2954428433 @default.
- W4386307632 hasRelatedWork W2955597675 @default.
- W4386307632 hasRelatedWork W3100538332 @default.
- W4386307632 hasRelatedWork W3159185323 @default.
- W4386307632 hasRelatedWork W3198504664 @default.
- W4386307632 hasRelatedWork W4312808026 @default.
- W4386307632 hasRelatedWork W4386307632 @default.