Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386308278> ?p ?o ?g. }
- W4386308278 abstract "Abstract Seismology is witnessing explosive growth in the diversity and scale of earthquake catalogs. A key motivation for this community effort is that more data should translate into better earthquake forecasts. Such improvements are yet to be seen. Here, we introduce the Recurrent Earthquake foreCAST (RECAST), a deep‐learning model based on recent developments in neural temporal point processes. The model enables access to a greater volume and diversity of earthquake observations, overcoming the theoretical and computational limitations of traditional approaches. We benchmark against a temporal Epidemic Type Aftershock Sequence model. Tests on synthetic data suggest that with a modest‐sized data set, RECAST accurately models earthquake‐like point processes directly from cataloged data. Tests on earthquake catalogs in Southern California indicate improved fit and forecast accuracy compared to our benchmark when the training set is sufficiently long (>10 4 events). The basic components in RECAST add flexibility and scalability for earthquake forecasting without sacrificing performance." @default.
- W4386308278 created "2023-09-01" @default.
- W4386308278 creator A5018827178 @default.
- W4386308278 creator A5041786129 @default.
- W4386308278 creator A5059880955 @default.
- W4386308278 creator A5074504351 @default.
- W4386308278 date "2023-08-31" @default.
- W4386308278 modified "2023-10-04" @default.
- W4386308278 title "Using Deep Learning for Flexible and Scalable Earthquake Forecasting" @default.
- W4386308278 cites W1480041858 @default.
- W4386308278 cites W1800489429 @default.
- W4386308278 cites W1904429860 @default.
- W4386308278 cites W1966732583 @default.
- W4386308278 cites W2023177223 @default.
- W4386308278 cites W2025720061 @default.
- W4386308278 cites W2028944227 @default.
- W4386308278 cites W2063633387 @default.
- W4386308278 cites W2064758233 @default.
- W4386308278 cites W2089337487 @default.
- W4386308278 cites W2098240499 @default.
- W4386308278 cites W2104292910 @default.
- W4386308278 cites W2109275736 @default.
- W4386308278 cites W2148407447 @default.
- W4386308278 cites W2157331557 @default.
- W4386308278 cites W2172192324 @default.
- W4386308278 cites W2338123943 @default.
- W4386308278 cites W2509830164 @default.
- W4386308278 cites W2515238077 @default.
- W4386308278 cites W2594420594 @default.
- W4386308278 cites W2604434961 @default.
- W4386308278 cites W2731003373 @default.
- W4386308278 cites W2740053325 @default.
- W4386308278 cites W2747173499 @default.
- W4386308278 cites W2935862809 @default.
- W4386308278 cites W2955272954 @default.
- W4386308278 cites W2962756421 @default.
- W4386308278 cites W2978214782 @default.
- W4386308278 cites W3026667335 @default.
- W4386308278 cites W3047855151 @default.
- W4386308278 cites W3121523779 @default.
- W4386308278 cites W3157951468 @default.
- W4386308278 cites W3162220961 @default.
- W4386308278 cites W3187289530 @default.
- W4386308278 cites W3191421538 @default.
- W4386308278 cites W4210883950 @default.
- W4386308278 cites W4226207687 @default.
- W4386308278 cites W4244548826 @default.
- W4386308278 cites W4308026454 @default.
- W4386308278 cites W4309502656 @default.
- W4386308278 cites W4321015485 @default.
- W4386308278 doi "https://doi.org/10.1029/2023gl103909" @default.
- W4386308278 hasPublicationYear "2023" @default.
- W4386308278 type Work @default.
- W4386308278 citedByCount "1" @default.
- W4386308278 crossrefType "journal-article" @default.
- W4386308278 hasAuthorship W4386308278A5018827178 @default.
- W4386308278 hasAuthorship W4386308278A5041786129 @default.
- W4386308278 hasAuthorship W4386308278A5059880955 @default.
- W4386308278 hasAuthorship W4386308278A5074504351 @default.
- W4386308278 hasBestOaLocation W43863082781 @default.
- W4386308278 hasConcept C105795698 @default.
- W4386308278 hasConcept C11097651 @default.
- W4386308278 hasConcept C119857082 @default.
- W4386308278 hasConcept C124101348 @default.
- W4386308278 hasConcept C127313418 @default.
- W4386308278 hasConcept C13280743 @default.
- W4386308278 hasConcept C154945302 @default.
- W4386308278 hasConcept C156801008 @default.
- W4386308278 hasConcept C165205528 @default.
- W4386308278 hasConcept C177264268 @default.
- W4386308278 hasConcept C185798385 @default.
- W4386308278 hasConcept C199360897 @default.
- W4386308278 hasConcept C205649164 @default.
- W4386308278 hasConcept C2778755073 @default.
- W4386308278 hasConcept C2780598303 @default.
- W4386308278 hasConcept C33923547 @default.
- W4386308278 hasConcept C41008148 @default.
- W4386308278 hasConcept C48044578 @default.
- W4386308278 hasConcept C50644808 @default.
- W4386308278 hasConcept C58489278 @default.
- W4386308278 hasConcept C58640448 @default.
- W4386308278 hasConcept C77088390 @default.
- W4386308278 hasConcept C90626213 @default.
- W4386308278 hasConceptScore W4386308278C105795698 @default.
- W4386308278 hasConceptScore W4386308278C11097651 @default.
- W4386308278 hasConceptScore W4386308278C119857082 @default.
- W4386308278 hasConceptScore W4386308278C124101348 @default.
- W4386308278 hasConceptScore W4386308278C127313418 @default.
- W4386308278 hasConceptScore W4386308278C13280743 @default.
- W4386308278 hasConceptScore W4386308278C154945302 @default.
- W4386308278 hasConceptScore W4386308278C156801008 @default.
- W4386308278 hasConceptScore W4386308278C165205528 @default.
- W4386308278 hasConceptScore W4386308278C177264268 @default.
- W4386308278 hasConceptScore W4386308278C185798385 @default.
- W4386308278 hasConceptScore W4386308278C199360897 @default.
- W4386308278 hasConceptScore W4386308278C205649164 @default.
- W4386308278 hasConceptScore W4386308278C2778755073 @default.
- W4386308278 hasConceptScore W4386308278C2780598303 @default.
- W4386308278 hasConceptScore W4386308278C33923547 @default.
- W4386308278 hasConceptScore W4386308278C41008148 @default.