Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386313506> ?p ?o ?g. }
- W4386313506 endingPage "230034" @default.
- W4386313506 startingPage "230034" @default.
- W4386313506 abstract "Recently, deep learning has yielded transformative success across optics and photonics, especially in optical metrology. Deep neural networks (DNNs) with a fully convolutional architecture (e.g., U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks, such as fringe denoising, phase unwrapping, and fringe analysis. However, the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs seems at best naïve, as the physical laws governing the image formation or other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice. To this end, we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (LeFTP) module. By parameterizing conventional phase retrieval methods, the LeFTP module embeds the prior knowledge in the network structure and the loss function to directly provide reliable phase results for new types of samples, while circumventing the requirement of collecting a large amount of high-quality data in supervised learning methods. Guided by the initial phase from LeFTP, the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a low computational cost compared with existing end-to-end networks. Experimental results demonstrate that PI-FPA enables more accurate and computationally efficient single-shot phase retrieval, exhibiting its excellent generalization to various unseen objects during training. The proposed PI-FPA presents that challenging issues in optical metrology can be potentially overcome through the synergy of physics-priors-based traditional tools and data-driven learning approaches, opening new avenues to achieve fast and accurate single-shot 3D imaging." @default.
- W4386313506 created "2023-09-01" @default.
- W4386313506 creator A5001864512 @default.
- W4386313506 creator A5008832723 @default.
- W4386313506 creator A5012009678 @default.
- W4386313506 creator A5014702970 @default.
- W4386313506 creator A5049956215 @default.
- W4386313506 creator A5061642704 @default.
- W4386313506 creator A5068290128 @default.
- W4386313506 creator A5070127662 @default.
- W4386313506 creator A5080935585 @default.
- W4386313506 date "2024-01-01" @default.
- W4386313506 modified "2023-10-15" @default.
- W4386313506 title "Physics-informed deep learning for fringe pattern analysis" @default.
- W4386313506 cites W1670596404 @default.
- W4386313506 cites W1964535464 @default.
- W4386313506 cites W2032397366 @default.
- W4386313506 cites W2067952788 @default.
- W4386313506 cites W2075978784 @default.
- W4386313506 cites W2111787976 @default.
- W4386313506 cites W2127996129 @default.
- W4386313506 cites W2131563332 @default.
- W4386313506 cites W2171646521 @default.
- W4386313506 cites W2320670592 @default.
- W4386313506 cites W2398687705 @default.
- W4386313506 cites W2612688942 @default.
- W4386313506 cites W2617922719 @default.
- W4386313506 cites W2773247819 @default.
- W4386313506 cites W2778531572 @default.
- W4386313506 cites W2804654620 @default.
- W4386313506 cites W2810363749 @default.
- W4386313506 cites W2905995769 @default.
- W4386313506 cites W2913539075 @default.
- W4386313506 cites W2945943327 @default.
- W4386313506 cites W2964231206 @default.
- W4386313506 cites W3020963216 @default.
- W4386313506 cites W3033795254 @default.
- W4386313506 cites W3042242965 @default.
- W4386313506 cites W3046946208 @default.
- W4386313506 cites W3094260416 @default.
- W4386313506 cites W3101025873 @default.
- W4386313506 cites W3119794873 @default.
- W4386313506 cites W3169865585 @default.
- W4386313506 cites W4214513770 @default.
- W4386313506 cites W4240543907 @default.
- W4386313506 cites W4309717547 @default.
- W4386313506 cites W4315487180 @default.
- W4386313506 cites W4376873310 @default.
- W4386313506 doi "https://doi.org/10.29026/oea.2024.230034" @default.
- W4386313506 hasPublicationYear "2024" @default.
- W4386313506 type Work @default.
- W4386313506 citedByCount "0" @default.
- W4386313506 crossrefType "journal-article" @default.
- W4386313506 hasAuthorship W4386313506A5001864512 @default.
- W4386313506 hasAuthorship W4386313506A5008832723 @default.
- W4386313506 hasAuthorship W4386313506A5012009678 @default.
- W4386313506 hasAuthorship W4386313506A5014702970 @default.
- W4386313506 hasAuthorship W4386313506A5049956215 @default.
- W4386313506 hasAuthorship W4386313506A5061642704 @default.
- W4386313506 hasAuthorship W4386313506A5068290128 @default.
- W4386313506 hasAuthorship W4386313506A5070127662 @default.
- W4386313506 hasAuthorship W4386313506A5080935585 @default.
- W4386313506 hasBestOaLocation W43863135061 @default.
- W4386313506 hasConcept C102519508 @default.
- W4386313506 hasConcept C108583219 @default.
- W4386313506 hasConcept C119857082 @default.
- W4386313506 hasConcept C120665830 @default.
- W4386313506 hasConcept C121332964 @default.
- W4386313506 hasConcept C134306372 @default.
- W4386313506 hasConcept C151201525 @default.
- W4386313506 hasConcept C153180895 @default.
- W4386313506 hasConcept C154945302 @default.
- W4386313506 hasConcept C177148314 @default.
- W4386313506 hasConcept C195766429 @default.
- W4386313506 hasConcept C33923547 @default.
- W4386313506 hasConcept C41008148 @default.
- W4386313506 hasConcept C44280652 @default.
- W4386313506 hasConcept C50644808 @default.
- W4386313506 hasConcept C62520636 @default.
- W4386313506 hasConcept C81363708 @default.
- W4386313506 hasConceptScore W4386313506C102519508 @default.
- W4386313506 hasConceptScore W4386313506C108583219 @default.
- W4386313506 hasConceptScore W4386313506C119857082 @default.
- W4386313506 hasConceptScore W4386313506C120665830 @default.
- W4386313506 hasConceptScore W4386313506C121332964 @default.
- W4386313506 hasConceptScore W4386313506C134306372 @default.
- W4386313506 hasConceptScore W4386313506C151201525 @default.
- W4386313506 hasConceptScore W4386313506C153180895 @default.
- W4386313506 hasConceptScore W4386313506C154945302 @default.
- W4386313506 hasConceptScore W4386313506C177148314 @default.
- W4386313506 hasConceptScore W4386313506C195766429 @default.
- W4386313506 hasConceptScore W4386313506C33923547 @default.
- W4386313506 hasConceptScore W4386313506C41008148 @default.
- W4386313506 hasConceptScore W4386313506C44280652 @default.
- W4386313506 hasConceptScore W4386313506C50644808 @default.
- W4386313506 hasConceptScore W4386313506C62520636 @default.
- W4386313506 hasConceptScore W4386313506C81363708 @default.
- W4386313506 hasIssue "0" @default.