Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386314901> ?p ?o ?g. }
- W4386314901 endingPage "104947" @default.
- W4386314901 startingPage "104947" @default.
- W4386314901 abstract "Shear zones are one of the most conspicuous structures in orogenic and rifting settings, accommodating high strain, rock displacement and influencing magma emplacement and fluid flow. Since shear zones may be simultaneously or sequentially affected by multiple processes involving mineral reactions, variations in pressure-temperature conditions, fluid-rock interaction, and diffusion, determining the timing of such structures has been one of the major challenges for modern geochronology. Although low- (up to lower greenschist facies) and high-temperature shear zones (above amphibolite facies) are well-dated through low- and high-closure temperature minerals, medium-temperature shear zones developed within the critical temperature window of ∼450–550 °C, in which conventional chronometers such as 40Ar/39Ar and Rb–Sr applied to mica fish may or may not record the timing of deformation for multiple reasons (e.g., grain size, cooling rate, mineral composition, fluid activity, deformation, neo- and recrystallization). Here, we review the current knowledge on the evolution of mica fish and the effect of deformation on its chemical and isotopic systems. We evaluate the effect on the widely deployed in situ 40Ar/39Ar technique. Furthermore, we demonstrate the potential to assess mica fish evolution applying high-spatial resolution microstructural and chemical mapping techniques such as electron backscatter diffraction (EBSD), time-of-flight secondary ion mass spectrometry (ToF–SIMS) and in situ Rb–Sr via triple quadrupole inductively coupled plasma mass spectrometry (TQ-ICP-MS) to a case study of medium-temperature mylonites from the well-characterized Taxaquara shear zone, SE Brazil. We show that mica fish display complex microstructures with variable strain intensity, commonly with low strain inner cores and high strain edges and along kink planes. Strain shadows in mica fish are commonly characterized by low-strain fine-grained muscovite, suggesting recrystallization coeval with ductile deformation. Despite being intensely deformed, muscovite fish Rb–Sr retain protolith age (c. 600 Ma), whereas recrystallized fine-grained muscovite yields the timing of deformation (c. 550–540 Ma). Synthetic shear bands cross-cutting coarse-grained muscovite fish induce muscovite recrystallization consistent with their distinct chemistry, with recrystallized muscovite characterized by higher Fe–Mg and lower Na suggesting fluid-assisted recrystallization under lower temperature compared to the muscovite fish host. We propose that these shear bands across mica fish play an important role by accommodating grain size reduction and subsequent deformation, leading to the formation of smaller individual mica fish. Grain size reduction, likely enhanced by dynamic precipitation (i.e., coeval crystal-plastic deformation and dissolution-precipitation creep), appears as the key recrystallization mechanism that allows low strain muscovite in strain shadows and shear bands to record the timing of deformation in medium-temperature shear zones, consistent with qualitative Sr diffusion modelling." @default.
- W4386314901 created "2023-09-01" @default.
- W4386314901 creator A5028231791 @default.
- W4386314901 creator A5038807065 @default.
- W4386314901 creator A5064051713 @default.
- W4386314901 creator A5066734699 @default.
- W4386314901 creator A5068169676 @default.
- W4386314901 creator A5079395428 @default.
- W4386314901 creator A5092723200 @default.
- W4386314901 date "2023-10-01" @default.
- W4386314901 modified "2023-10-06" @default.
- W4386314901 title "Microstructures, geochemistry, and geochronology of mica fish: Review and advances" @default.
- W4386314901 cites W1922461958 @default.
- W4386314901 cites W1964652436 @default.
- W4386314901 cites W1965458064 @default.
- W4386314901 cites W1968558694 @default.
- W4386314901 cites W1968907497 @default.
- W4386314901 cites W1972473517 @default.
- W4386314901 cites W1973963173 @default.
- W4386314901 cites W1975550517 @default.
- W4386314901 cites W1976231896 @default.
- W4386314901 cites W1980308545 @default.
- W4386314901 cites W1981244912 @default.
- W4386314901 cites W1984316683 @default.
- W4386314901 cites W1985605940 @default.
- W4386314901 cites W1986139702 @default.
- W4386314901 cites W1987192769 @default.
- W4386314901 cites W1988756294 @default.
- W4386314901 cites W1990317433 @default.
- W4386314901 cites W1990668350 @default.
- W4386314901 cites W1992705178 @default.
- W4386314901 cites W1996539128 @default.
- W4386314901 cites W1997651883 @default.
- W4386314901 cites W1998488801 @default.
- W4386314901 cites W2003030071 @default.
- W4386314901 cites W2004818826 @default.
- W4386314901 cites W2005069119 @default.
- W4386314901 cites W2008497580 @default.
- W4386314901 cites W2009195085 @default.
- W4386314901 cites W2017493208 @default.
- W4386314901 cites W2021778941 @default.
- W4386314901 cites W2030199326 @default.
- W4386314901 cites W2030745829 @default.
- W4386314901 cites W2031402176 @default.
- W4386314901 cites W2031451205 @default.
- W4386314901 cites W2032001189 @default.
- W4386314901 cites W2032217295 @default.
- W4386314901 cites W2034266175 @default.
- W4386314901 cites W2035382030 @default.
- W4386314901 cites W2041092203 @default.
- W4386314901 cites W2042154180 @default.
- W4386314901 cites W2042473341 @default.
- W4386314901 cites W2042948090 @default.
- W4386314901 cites W2043976278 @default.
- W4386314901 cites W2048353423 @default.
- W4386314901 cites W2049357670 @default.
- W4386314901 cites W2050712935 @default.
- W4386314901 cites W2052276144 @default.
- W4386314901 cites W2052359702 @default.
- W4386314901 cites W2052663957 @default.
- W4386314901 cites W2053381713 @default.
- W4386314901 cites W2053996888 @default.
- W4386314901 cites W2059183862 @default.
- W4386314901 cites W2059380579 @default.
- W4386314901 cites W2060646607 @default.
- W4386314901 cites W2061095231 @default.
- W4386314901 cites W2063953857 @default.
- W4386314901 cites W2065315810 @default.
- W4386314901 cites W2067410203 @default.
- W4386314901 cites W2068104824 @default.
- W4386314901 cites W2069308744 @default.
- W4386314901 cites W2071834839 @default.
- W4386314901 cites W2072812409 @default.
- W4386314901 cites W2076407969 @default.
- W4386314901 cites W2084401884 @default.
- W4386314901 cites W2084585887 @default.
- W4386314901 cites W2087558643 @default.
- W4386314901 cites W2089117174 @default.
- W4386314901 cites W2089507620 @default.
- W4386314901 cites W2089820982 @default.
- W4386314901 cites W2090474802 @default.
- W4386314901 cites W2093022880 @default.
- W4386314901 cites W2093663242 @default.
- W4386314901 cites W2098959746 @default.
- W4386314901 cites W2100411277 @default.
- W4386314901 cites W2102619898 @default.
- W4386314901 cites W2107012155 @default.
- W4386314901 cites W2113085883 @default.
- W4386314901 cites W2116767530 @default.
- W4386314901 cites W2120619916 @default.
- W4386314901 cites W2121524846 @default.
- W4386314901 cites W2136193032 @default.
- W4386314901 cites W2145604970 @default.
- W4386314901 cites W2147944657 @default.
- W4386314901 cites W2149645814 @default.
- W4386314901 cites W2149824101 @default.
- W4386314901 cites W2150224887 @default.
- W4386314901 cites W2153479198 @default.