Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386317103> ?p ?o ?g. }
- W4386317103 endingPage "465" @default.
- W4386317103 startingPage "453" @default.
- W4386317103 abstract "Perturbation of transcriptome in viral infection patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent transcriptome and identification of robust biomarkers is not complete. In this study, we manually collected 23 datasets related to 6,197 blood transcriptomes across 16 types of respiratory virus infections. We applied a comprehensive systems biology approach starting with whole-blood transcriptomes combined with multilevel bioinformatics analyses to characterize the expression, functional pathways, and protein-protein interaction (PPI) networks to identify robust biomarkers and disease comorbidities. Robust gene markers of infection with different viruses were identified, which can accurately classify the normal and infected patients in train and validation cohorts. The biological processes (BP) of different viruses showed great similarity and enriched in infection and immune response pathways. Network-based analyses revealed that a variety of viral infections were associated with nervous system diseases, neoplasms and metabolic diseases, and significantly correlated with brain tissues. In summary, our manually collected transcriptomes and comprehensive analyses reveal key molecular markers and disease comorbidities in the process of viral infection, which could provide a valuable theoretical basis for the prevention of subsequent public health events for respiratory virus infections." @default.
- W4386317103 created "2023-09-01" @default.
- W4386317103 creator A5016572109 @default.
- W4386317103 creator A5020886157 @default.
- W4386317103 creator A5024238293 @default.
- W4386317103 creator A5043500781 @default.
- W4386317103 creator A5057265833 @default.
- W4386317103 creator A5069071779 @default.
- W4386317103 creator A5073267846 @default.
- W4386317103 creator A5087492178 @default.
- W4386317103 creator A5091758507 @default.
- W4386317103 creator A5092172426 @default.
- W4386317103 date "2023-08-31" @default.
- W4386317103 modified "2023-10-16" @default.
- W4386317103 title "Systematical analyses of large-scale transcriptome reveal viral infection-related genes and disease comorbidities" @default.
- W4386317103 cites W1488537470 @default.
- W4386317103 cites W1973334616 @default.
- W4386317103 cites W1987433340 @default.
- W4386317103 cites W1989921625 @default.
- W4386317103 cites W2003060510 @default.
- W4386317103 cites W2006617902 @default.
- W4386317103 cites W2044635447 @default.
- W4386317103 cites W2050040190 @default.
- W4386317103 cites W2056782561 @default.
- W4386317103 cites W2086320398 @default.
- W4386317103 cites W2100161431 @default.
- W4386317103 cites W2100239923 @default.
- W4386317103 cites W2122863289 @default.
- W4386317103 cites W2126152935 @default.
- W4386317103 cites W2131271579 @default.
- W4386317103 cites W2158620400 @default.
- W4386317103 cites W2461688869 @default.
- W4386317103 cites W2750452787 @default.
- W4386317103 cites W2751536150 @default.
- W4386317103 cites W2803699894 @default.
- W4386317103 cites W2898598946 @default.
- W4386317103 cites W2902664755 @default.
- W4386317103 cites W2909444856 @default.
- W4386317103 cites W2913727230 @default.
- W4386317103 cites W2928665623 @default.
- W4386317103 cites W2929947297 @default.
- W4386317103 cites W2950764390 @default.
- W4386317103 cites W2990131011 @default.
- W4386317103 cites W2997835672 @default.
- W4386317103 cites W3006378540 @default.
- W4386317103 cites W3011072970 @default.
- W4386317103 cites W3011727606 @default.
- W4386317103 cites W3016641669 @default.
- W4386317103 cites W3022368634 @default.
- W4386317103 cites W3043029189 @default.
- W4386317103 cites W3081363046 @default.
- W4386317103 cites W3090208839 @default.
- W4386317103 cites W3090370365 @default.
- W4386317103 cites W3092577522 @default.
- W4386317103 cites W3112105690 @default.
- W4386317103 cites W3120044720 @default.
- W4386317103 cites W3120376855 @default.
- W4386317103 cites W3121907320 @default.
- W4386317103 cites W3122166825 @default.
- W4386317103 cites W3130228814 @default.
- W4386317103 cites W3130309745 @default.
- W4386317103 cites W3130518159 @default.
- W4386317103 cites W3134490799 @default.
- W4386317103 cites W3136391033 @default.
- W4386317103 cites W3154144457 @default.
- W4386317103 cites W3155077988 @default.
- W4386317103 cites W3157705146 @default.
- W4386317103 cites W3158129026 @default.
- W4386317103 cites W3158803244 @default.
- W4386317103 cites W3158868742 @default.
- W4386317103 cites W3163349744 @default.
- W4386317103 cites W3177787553 @default.
- W4386317103 cites W3180711260 @default.
- W4386317103 cites W3186647002 @default.
- W4386317103 cites W3197265621 @default.
- W4386317103 cites W3204370302 @default.
- W4386317103 cites W3208841684 @default.
- W4386317103 cites W3209130934 @default.
- W4386317103 cites W3212777349 @default.
- W4386317103 cites W4200022103 @default.
- W4386317103 cites W4200170005 @default.
- W4386317103 cites W4205342687 @default.
- W4386317103 cites W4206624173 @default.
- W4386317103 cites W4210593075 @default.
- W4386317103 cites W4212907569 @default.
- W4386317103 cites W4213244231 @default.
- W4386317103 cites W4220979664 @default.
- W4386317103 cites W4221047543 @default.
- W4386317103 cites W4225369321 @default.
- W4386317103 cites W4281833436 @default.
- W4386317103 cites W4293510972 @default.
- W4386317103 cites W4302276202 @default.
- W4386317103 doi "https://doi.org/10.1080/21691401.2023.2252477" @default.
- W4386317103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37651591" @default.
- W4386317103 hasPublicationYear "2023" @default.
- W4386317103 type Work @default.
- W4386317103 citedByCount "0" @default.
- W4386317103 crossrefType "journal-article" @default.