Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386317837> ?p ?o ?g. }
- W4386317837 abstract "Abstract Purpose Genetic variants in complement genes are associated with age-related macular degeneration (AMD). However, many rare variants have been identified in these genes, but have an unknown significance, and their impact on protein function and structure is still unknown. We set out to address this issue by evaluating the spatial placement and impact on protein structureof these variants by developing an analytical pipeline and applying it to the International AMD Genomics Consortium (IAMDGC) dataset (16,144 AMD cases, 17,832 controls). Methods The IAMDGC dataset was imputed using the Haplotype Reference Consortium (HRC), leading to an improvement of over 30% more imputed variants, over the original 1000 Genomes imputation. Variants were extracted for the CFH , CFI , CFB , C9 , and C3 genes, and filtered for missense variants in solved protein structures. We evaluated these variants as to their placement in the three-dimensional structure of the protein (i.e. spatial proximity in the protein), as well as AMD association. We applied several pipelines to a) calculate spatial proximity to known AMD variants versus gnomAD variants, b) assess a variant’s likelihood of causing protein destabilization via calculation of predicted free energy change (ddG) using Rosetta, and c) whole gene-based testing to test for statistical associations. Gene-based testing using seqMeta was performed using a) all variants b) variants near known AMD variants or c) with a ddG >|2|. Further, we applied a structural kernel adaptation of SKAT testing (POKEMON) to confirm the association of spatial distributions of missense variants to AMD. Finally, we used logistic regression on known AMD variants in CFI to identify variants leading to >50% reduction in protein expression from known AMD patient carriers of CFI variants compared to wild type (as determined by in vitro experiments) to determine the pipeline’s robustness in identifying AMD-relevant variants. These results were compared to functional impact scores, ie CADD values > 10, which indicate if a variant may have a large functional impact genomewide, to determine if our metrics have better discriminative power than existing variant assessment methods. Once our pipeline had been validated, we then performed a priori selection of variants using this pipeline methodology, and tested AMD patient cell lines that carried those selected variants from the EUGENDA cohort (n=34). We investigated complement pathway protein expression in vitro , looking at multiple components of the complement factor pathway in patient carriers of bioinformatically identified variants. Results Multiple variants were found with a ddG>|2| in each complement gene investigated. Gene-based tests using known and novel missense variants identified significant associations of the C3 , C9 , CFB , and CFH genes with AMD risk after controlling for age and sex (P=3.22×10 −5 ;7.58×10 −6 ;2.1×10 −3 ;1.2×10 −31 ). ddG filtering and SKAT-O tests indicate that missense variants that are predicted to destabilize the protein, in both CFI and CFH, are associated with AMD (P=CFH:0.05, CFI:0.01, threshold of 0.05 significance). Our structural kernel approach identified spatial associations for AMD risk within the protein structures for C3, C9, CFB, CFH, and CFI at a nominal p-value of 0.05. Both ddG and CADD scores were predictive of reduced CFI protein expression, with ROC curve analyses indicating ddG is a better predictor (AUCs of 0.76 and 0.69, respectively). A priori in vitro analysis of variants in all complement factor genes indicated that several variants identified via bioinformatics programs PathProx/POKEMON in our pipeline via in vitro experiments caused significant change in complement protein expression (P=0.04) in actual patient carriers of those variants, via ELISA testing of proteins in the complement factor pathway, and were previously unknown to contribute to AMD pathogenesis. Conclusion We demonstrate for the first time that missense variants in complement genes cluster together spatially and are associated with AMD case/control status. Using this method, we can identify CFI and CFH variants of previously unknown significance that are predicted to destabilize the proteins. These variants, both in and outside spatial clusters, can predict in-vitro tested CFI protein expression changes, and we hypothesize the same is true for CFH . A priori identification of variants that impact gene expression allow for classification for previously classified as VUS. Further investigation is needed to validate the models for additional variants and to be applied to all AMD-associated genes." @default.
- W4386317837 created "2023-09-01" @default.
- W4386317837 creator A5017026310 @default.
- W4386317837 creator A5017645655 @default.
- W4386317837 creator A5017667237 @default.
- W4386317837 creator A5020266650 @default.
- W4386317837 creator A5025137286 @default.
- W4386317837 creator A5026658413 @default.
- W4386317837 creator A5034739562 @default.
- W4386317837 creator A5037381151 @default.
- W4386317837 creator A5067362950 @default.
- W4386317837 creator A5087966798 @default.
- W4386317837 date "2023-08-31" @default.
- W4386317837 modified "2023-09-28" @default.
- W4386317837 title "Spatial Distribution of Missense Variants within Complement Proteins Associates with Age Related Macular Degeneration" @default.
- W4386317837 cites W1930918755 @default.
- W4386317837 cites W1974599488 @default.
- W4386317837 cites W1981231263 @default.
- W4386317837 cites W2003408819 @default.
- W4386317837 cites W2025670719 @default.
- W4386317837 cites W2061539393 @default.
- W4386317837 cites W2099672241 @default.
- W4386317837 cites W2129418664 @default.
- W4386317837 cites W2153457180 @default.
- W4386317837 cites W2163193571 @default.
- W4386317837 cites W2233221674 @default.
- W4386317837 cites W2408850291 @default.
- W4386317837 cites W2511515754 @default.
- W4386317837 cites W2557981253 @default.
- W4386317837 cites W2606439133 @default.
- W4386317837 cites W2620998958 @default.
- W4386317837 cites W2786506455 @default.
- W4386317837 cites W2804822363 @default.
- W4386317837 cites W2805666330 @default.
- W4386317837 cites W2951867945 @default.
- W4386317837 cites W2953076286 @default.
- W4386317837 cites W3033767525 @default.
- W4386317837 cites W3034151544 @default.
- W4386317837 cites W3080226930 @default.
- W4386317837 cites W3095866415 @default.
- W4386317837 cites W3119142673 @default.
- W4386317837 cites W3189020867 @default.
- W4386317837 cites W3198038579 @default.
- W4386317837 cites W4205428089 @default.
- W4386317837 cites W4213448286 @default.
- W4386317837 cites W4384119816 @default.
- W4386317837 doi "https://doi.org/10.1101/2023.08.28.23294686" @default.
- W4386317837 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37693462" @default.
- W4386317837 hasPublicationYear "2023" @default.
- W4386317837 type Work @default.
- W4386317837 citedByCount "0" @default.
- W4386317837 crossrefType "posted-content" @default.
- W4386317837 hasAuthorship W4386317837A5017026310 @default.
- W4386317837 hasAuthorship W4386317837A5017645655 @default.
- W4386317837 hasAuthorship W4386317837A5017667237 @default.
- W4386317837 hasAuthorship W4386317837A5020266650 @default.
- W4386317837 hasAuthorship W4386317837A5025137286 @default.
- W4386317837 hasAuthorship W4386317837A5026658413 @default.
- W4386317837 hasAuthorship W4386317837A5034739562 @default.
- W4386317837 hasAuthorship W4386317837A5037381151 @default.
- W4386317837 hasAuthorship W4386317837A5067362950 @default.
- W4386317837 hasAuthorship W4386317837A5087966798 @default.
- W4386317837 hasBestOaLocation W43863178371 @default.
- W4386317837 hasConcept C104317684 @default.
- W4386317837 hasConcept C119857082 @default.
- W4386317837 hasConcept C135763542 @default.
- W4386317837 hasConcept C141231307 @default.
- W4386317837 hasConcept C153209595 @default.
- W4386317837 hasConcept C180754005 @default.
- W4386317837 hasConcept C189206191 @default.
- W4386317837 hasConcept C197754878 @default.
- W4386317837 hasConcept C41008148 @default.
- W4386317837 hasConcept C501734568 @default.
- W4386317837 hasConcept C54355233 @default.
- W4386317837 hasConcept C58041806 @default.
- W4386317837 hasConcept C70721500 @default.
- W4386317837 hasConcept C75563809 @default.
- W4386317837 hasConcept C86803240 @default.
- W4386317837 hasConcept C9357733 @default.
- W4386317837 hasConcept C97425143 @default.
- W4386317837 hasConceptScore W4386317837C104317684 @default.
- W4386317837 hasConceptScore W4386317837C119857082 @default.
- W4386317837 hasConceptScore W4386317837C135763542 @default.
- W4386317837 hasConceptScore W4386317837C141231307 @default.
- W4386317837 hasConceptScore W4386317837C153209595 @default.
- W4386317837 hasConceptScore W4386317837C180754005 @default.
- W4386317837 hasConceptScore W4386317837C189206191 @default.
- W4386317837 hasConceptScore W4386317837C197754878 @default.
- W4386317837 hasConceptScore W4386317837C41008148 @default.
- W4386317837 hasConceptScore W4386317837C501734568 @default.
- W4386317837 hasConceptScore W4386317837C54355233 @default.
- W4386317837 hasConceptScore W4386317837C58041806 @default.
- W4386317837 hasConceptScore W4386317837C70721500 @default.
- W4386317837 hasConceptScore W4386317837C75563809 @default.
- W4386317837 hasConceptScore W4386317837C86803240 @default.
- W4386317837 hasConceptScore W4386317837C9357733 @default.
- W4386317837 hasConceptScore W4386317837C97425143 @default.
- W4386317837 hasLocation W43863178371 @default.
- W4386317837 hasLocation W43863178372 @default.
- W4386317837 hasOpenAccess W4386317837 @default.