Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386317891> ?p ?o ?g. }
- W4386317891 endingPage "25" @default.
- W4386317891 startingPage "1" @default.
- W4386317891 abstract "The features influencing real estate value in different residential areas and cities are important for spatial economic analysis besides high appraisal accuracy. In this study, a methodology was developed for computer-assisted mass real estate appraisal with a case study implemented through the use of big geographical datasets including 121 features and around 200,000 samples of real estate in Istanbul and Kocaeli (Turkey). Prediction models using the random forest technique were developed for five appraisal zones determined with spatially constrained multivariate clustering. With machine learning and mass appraisal metrics, modelling performance improves in appraisal zones with a lower standard deviation expressing real estate value in neighbourhoods. Since importance levels and ranks of features vary in zones, the mass appraisal should be done with a sufficient number of features." @default.
- W4386317891 created "2023-09-01" @default.
- W4386317891 creator A5030675071 @default.
- W4386317891 creator A5086042896 @default.
- W4386317891 date "2023-08-31" @default.
- W4386317891 modified "2023-09-27" @default.
- W4386317891 title "Comparing modelling performance and evaluating differences of feature importance on defined geographical appraisal zones for mass real estate appraisal" @default.
- W4386317891 cites W1504778066 @default.
- W4386317891 cites W1887776127 @default.
- W4386317891 cites W1969522198 @default.
- W4386317891 cites W1973749534 @default.
- W4386317891 cites W1982394209 @default.
- W4386317891 cites W1989758099 @default.
- W4386317891 cites W2005754542 @default.
- W4386317891 cites W2018815836 @default.
- W4386317891 cites W2028399164 @default.
- W4386317891 cites W2049058890 @default.
- W4386317891 cites W2065143715 @default.
- W4386317891 cites W2067141068 @default.
- W4386317891 cites W2070300253 @default.
- W4386317891 cites W2078877713 @default.
- W4386317891 cites W2080921842 @default.
- W4386317891 cites W2086455107 @default.
- W4386317891 cites W2087216833 @default.
- W4386317891 cites W2097996192 @default.
- W4386317891 cites W2113242816 @default.
- W4386317891 cites W2118898434 @default.
- W4386317891 cites W2136347018 @default.
- W4386317891 cites W2155632266 @default.
- W4386317891 cites W2261059368 @default.
- W4386317891 cites W2286575958 @default.
- W4386317891 cites W2487770199 @default.
- W4386317891 cites W2596553986 @default.
- W4386317891 cites W2759373267 @default.
- W4386317891 cites W2766907042 @default.
- W4386317891 cites W2770211962 @default.
- W4386317891 cites W2801461565 @default.
- W4386317891 cites W2809969357 @default.
- W4386317891 cites W2886573410 @default.
- W4386317891 cites W2908970112 @default.
- W4386317891 cites W2911964244 @default.
- W4386317891 cites W2913543033 @default.
- W4386317891 cites W2952307397 @default.
- W4386317891 cites W2996331463 @default.
- W4386317891 cites W2996464143 @default.
- W4386317891 cites W3002176540 @default.
- W4386317891 cites W3008593201 @default.
- W4386317891 cites W3019435264 @default.
- W4386317891 cites W3033586340 @default.
- W4386317891 cites W3041783027 @default.
- W4386317891 cites W3089246515 @default.
- W4386317891 cites W3093658042 @default.
- W4386317891 cites W3131325702 @default.
- W4386317891 cites W3160618544 @default.
- W4386317891 cites W3163383220 @default.
- W4386317891 cites W381804301 @default.
- W4386317891 cites W4212883601 @default.
- W4386317891 cites W4220743529 @default.
- W4386317891 cites W4234967753 @default.
- W4386317891 cites W4245055982 @default.
- W4386317891 cites W4251466598 @default.
- W4386317891 cites W4280513466 @default.
- W4386317891 cites W4376453192 @default.
- W4386317891 cites W873782400 @default.
- W4386317891 doi "https://doi.org/10.1080/17421772.2023.2242897" @default.
- W4386317891 hasPublicationYear "2023" @default.
- W4386317891 type Work @default.
- W4386317891 citedByCount "0" @default.
- W4386317891 crossrefType "journal-article" @default.
- W4386317891 hasAuthorship W4386317891A5030675071 @default.
- W4386317891 hasAuthorship W4386317891A5086042896 @default.
- W4386317891 hasConcept C10138342 @default.
- W4386317891 hasConcept C105795698 @default.
- W4386317891 hasConcept C119857082 @default.
- W4386317891 hasConcept C124101348 @default.
- W4386317891 hasConcept C144133560 @default.
- W4386317891 hasConcept C149782125 @default.
- W4386317891 hasConcept C161584116 @default.
- W4386317891 hasConcept C169258074 @default.
- W4386317891 hasConcept C205649164 @default.
- W4386317891 hasConcept C2991739101 @default.
- W4386317891 hasConcept C33923547 @default.
- W4386317891 hasConcept C41008148 @default.
- W4386317891 hasConcept C73555534 @default.
- W4386317891 hasConcept C82279013 @default.
- W4386317891 hasConceptScore W4386317891C10138342 @default.
- W4386317891 hasConceptScore W4386317891C105795698 @default.
- W4386317891 hasConceptScore W4386317891C119857082 @default.
- W4386317891 hasConceptScore W4386317891C124101348 @default.
- W4386317891 hasConceptScore W4386317891C144133560 @default.
- W4386317891 hasConceptScore W4386317891C149782125 @default.
- W4386317891 hasConceptScore W4386317891C161584116 @default.
- W4386317891 hasConceptScore W4386317891C169258074 @default.
- W4386317891 hasConceptScore W4386317891C205649164 @default.
- W4386317891 hasConceptScore W4386317891C2991739101 @default.
- W4386317891 hasConceptScore W4386317891C33923547 @default.
- W4386317891 hasConceptScore W4386317891C41008148 @default.
- W4386317891 hasConceptScore W4386317891C73555534 @default.