Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386317977> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4386317977 endingPage "163" @default.
- W4386317977 startingPage "151" @default.
- W4386317977 abstract "Link for citation: Shcherbakov R.E., Kovalev A.V., Ilin A.V. Using supervised machine learning algorithms for kick detection during managed pressure drilling. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 2023, vol. 334, no. 8, рр. 151-163. In Rus. The relevance. The depletion of readily available hydrocarbon reserves determines development of fields with complex geological environment. Managed Pressure Drilling marked the era of high-precision well parameters monitoring during drilling. This technology has provided access to deposits that were previously considered practically «unusable». The main goal of using managed pressure drilling technology is to control downhole pressure within specified limits in order to prevent fluid loss, fracturing, as well as unwanted kick of reservoir fluids into the wellbore. However, if for a certain period of time there is a kick of reservoir fluid from an open borehole or there are losses of drilling fluid, then it is not possible to control the downhole pressure within the specified limits. In this case, it is necessary to use an additional method or algorithm that marks such periods and indicates to the operator or the monitoring system about the presence of kick or absorption of drilling mud. The problems described earlier predetermined the aim of this work. It is claimed that the intelligent system can automatically monitor and analyze parameter trends, detect anomalies in the change of drilling parameters in real time, predict in advance the probability of formation fluid kick and warn the drilling engineer at an early stage, which will allow implementing preventive activity to maintain the required downhole pressure profile. The main aim: create the kick detection machine learning model which predicts kick probability during the managed pressure well drilling using mud logging service data. Objects: multivariate-sensing time-series data of mud logging and measured pressure drilling service. Methods: analysis and evaluation of anomaly detection techniques of determining kick during managed pressure well drilling using machine learning. Results. The authors have performed the overview of anomaly detection techniques of determining kick during managed pressure well drilling using machine learning. Classical machine learning algorithms were tested with labeled test data in order to evaluate its performance. The authors have developed kick detection model with gradient boosting algorithm, evaluated its performance with labeled test dataset. Promising areas of further research were identified." @default.
- W4386317977 created "2023-09-01" @default.
- W4386317977 creator A5035881060 @default.
- W4386317977 creator A5042044229 @default.
- W4386317977 creator A5067525296 @default.
- W4386317977 date "2023-08-31" @default.
- W4386317977 modified "2023-09-27" @default.
- W4386317977 title "USING SUPERVISED MACHINE LEARNING ALGORITHMS FOR KICK DETECTION DURING MANAGED PRESSURE DRILLING" @default.
- W4386317977 doi "https://doi.org/10.18799/24131830/2023/8/4125" @default.
- W4386317977 hasPublicationYear "2023" @default.
- W4386317977 type Work @default.
- W4386317977 citedByCount "0" @default.
- W4386317977 crossrefType "journal-article" @default.
- W4386317977 hasAuthorship W4386317977A5035881060 @default.
- W4386317977 hasAuthorship W4386317977A5042044229 @default.
- W4386317977 hasAuthorship W4386317977A5067525296 @default.
- W4386317977 hasBestOaLocation W43863179771 @default.
- W4386317977 hasConcept C11413529 @default.
- W4386317977 hasConcept C127313418 @default.
- W4386317977 hasConcept C127413603 @default.
- W4386317977 hasConcept C150560799 @default.
- W4386317977 hasConcept C152068911 @default.
- W4386317977 hasConcept C187320778 @default.
- W4386317977 hasConcept C25197100 @default.
- W4386317977 hasConcept C2778904306 @default.
- W4386317977 hasConcept C41008148 @default.
- W4386317977 hasConcept C42222113 @default.
- W4386317977 hasConcept C58059514 @default.
- W4386317977 hasConcept C78519656 @default.
- W4386317977 hasConcept C78762247 @default.
- W4386317977 hasConceptScore W4386317977C11413529 @default.
- W4386317977 hasConceptScore W4386317977C127313418 @default.
- W4386317977 hasConceptScore W4386317977C127413603 @default.
- W4386317977 hasConceptScore W4386317977C150560799 @default.
- W4386317977 hasConceptScore W4386317977C152068911 @default.
- W4386317977 hasConceptScore W4386317977C187320778 @default.
- W4386317977 hasConceptScore W4386317977C25197100 @default.
- W4386317977 hasConceptScore W4386317977C2778904306 @default.
- W4386317977 hasConceptScore W4386317977C41008148 @default.
- W4386317977 hasConceptScore W4386317977C42222113 @default.
- W4386317977 hasConceptScore W4386317977C58059514 @default.
- W4386317977 hasConceptScore W4386317977C78519656 @default.
- W4386317977 hasConceptScore W4386317977C78762247 @default.
- W4386317977 hasIssue "8" @default.
- W4386317977 hasLocation W43863179771 @default.
- W4386317977 hasOpenAccess W4386317977 @default.
- W4386317977 hasPrimaryLocation W43863179771 @default.
- W4386317977 hasRelatedWork W180252629 @default.
- W4386317977 hasRelatedWork W1979534938 @default.
- W4386317977 hasRelatedWork W1990925147 @default.
- W4386317977 hasRelatedWork W2048341558 @default.
- W4386317977 hasRelatedWork W2355696603 @default.
- W4386317977 hasRelatedWork W2360334106 @default.
- W4386317977 hasRelatedWork W2380151091 @default.
- W4386317977 hasRelatedWork W4206605573 @default.
- W4386317977 hasRelatedWork W4280540500 @default.
- W4386317977 hasRelatedWork W4297229058 @default.
- W4386317977 hasVolume "334" @default.
- W4386317977 isParatext "false" @default.
- W4386317977 isRetracted "false" @default.
- W4386317977 workType "article" @default.