Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386318824> ?p ?o ?g. }
- W4386318824 endingPage "121300" @default.
- W4386318824 startingPage "121300" @default.
- W4386318824 abstract "This study presents a novel dynamic localisation-based decision (DLBD) with fuzzy weighting with zero inconsistency (FWZIC) under a probabilistic single-valued neutrosophic hesitant fuzzy set (PSVNHFS) environment to benchmark Hybrid Multi Deep Transfer and Machine Learning (HMDTML) models. The novel DLBD method is proposed to generate a dynamic localisation decision matrix based on the upper and lower boundaries and the length of the scale. The superiority of DLBD derives from its ability to manage dynamic changes with boundary value consequences. In addition, the utilization of PSVNHFS in conjunction with DLBD and FWZIC has proven to effectively address the challenges posed by vagueness, uncertainty and hesitancy in the benchmarking procedure. The proposed methodology consists of three primary three steps: i) the adaptation of 48 HMDTML models, including 4 deep transfer learning models and 12 machine learning models trained on a dataset of 936 chest X-ray images obtained from both COVID-19 patients and individuals without the disease. Then, these models were evaluated based on seven evaluation criteria, and a decision matrix was proposed. ii) The development of a PSVNH–FWZIC to assign weights to the evaluation criteria. iii) The formulation of a PSVNH–DLBD for the purpose of benchmarking HMDTML models. Results of the PSVNH–FWZIC revealed that AUC and time were the most important evaluation criteria, while precision was the least important. Furthermore, the results from PSVNH–DLBD, reveal that Model M24 (Painters-Decision Tree) earned the highest rank when λ=2,3,4,5and6, followed by Model M25 (SqueezeNet-AdaBoost) and Model M34 (DeepLoc-kNN), while Model M39 (DeepLoc-SVM) had the lowest rank (rank=48) across all λ values. The proposed method underwent sensitivity and comparison analyses to confirm its reliability and robustness." @default.
- W4386318824 created "2023-09-01" @default.
- W4386318824 creator A5003799782 @default.
- W4386318824 creator A5009797333 @default.
- W4386318824 creator A5018974025 @default.
- W4386318824 creator A5042905745 @default.
- W4386318824 creator A5051710693 @default.
- W4386318824 creator A5059702929 @default.
- W4386318824 creator A5068823049 @default.
- W4386318824 date "2024-02-01" @default.
- W4386318824 modified "2023-09-26" @default.
- W4386318824 title "Developing Deep Transfer and Machine Learning Models of Chest X-ray for Diagnosing COVID-19 Cases using Probabilistic Single-Valued Neutrosophic Hesitant Fuzzy" @default.
- W4386318824 cites W1717711170 @default.
- W4386318824 cites W2520576094 @default.
- W4386318824 cites W2621367454 @default.
- W4386318824 cites W2788633781 @default.
- W4386318824 cites W2891987911 @default.
- W4386318824 cites W2961724074 @default.
- W4386318824 cites W2970678513 @default.
- W4386318824 cites W3003963671 @default.
- W4386318824 cites W3009821127 @default.
- W4386318824 cites W3011238444 @default.
- W4386318824 cites W3016488464 @default.
- W4386318824 cites W3017855299 @default.
- W4386318824 cites W3019449959 @default.
- W4386318824 cites W3021001507 @default.
- W4386318824 cites W3021622280 @default.
- W4386318824 cites W3026419502 @default.
- W4386318824 cites W3028427008 @default.
- W4386318824 cites W3030621456 @default.
- W4386318824 cites W3036907280 @default.
- W4386318824 cites W3044240928 @default.
- W4386318824 cites W3045460727 @default.
- W4386318824 cites W3046500052 @default.
- W4386318824 cites W3047488904 @default.
- W4386318824 cites W3048886990 @default.
- W4386318824 cites W3087300877 @default.
- W4386318824 cites W3091978650 @default.
- W4386318824 cites W3092243026 @default.
- W4386318824 cites W3092781914 @default.
- W4386318824 cites W3096437212 @default.
- W4386318824 cites W3103635657 @default.
- W4386318824 cites W3115655654 @default.
- W4386318824 cites W3129151102 @default.
- W4386318824 cites W3132061261 @default.
- W4386318824 cites W3134867620 @default.
- W4386318824 cites W3158528201 @default.
- W4386318824 cites W3161085879 @default.
- W4386318824 cites W3174846316 @default.
- W4386318824 cites W3189257822 @default.
- W4386318824 cites W3203589764 @default.
- W4386318824 cites W4200402767 @default.
- W4386318824 cites W4214889912 @default.
- W4386318824 cites W4230649743 @default.
- W4386318824 cites W4292457708 @default.
- W4386318824 cites W4301366202 @default.
- W4386318824 cites W4306647794 @default.
- W4386318824 cites W4308347903 @default.
- W4386318824 cites W4313042344 @default.
- W4386318824 cites W4318950876 @default.
- W4386318824 cites W4323543432 @default.
- W4386318824 cites W4360840075 @default.
- W4386318824 cites W4366088272 @default.
- W4386318824 cites W4366605903 @default.
- W4386318824 cites W4366723312 @default.
- W4386318824 cites W4368232900 @default.
- W4386318824 cites W4382601074 @default.
- W4386318824 cites W4386211913 @default.
- W4386318824 cites W4386244904 @default.
- W4386318824 doi "https://doi.org/10.1016/j.eswa.2023.121300" @default.
- W4386318824 hasPublicationYear "2024" @default.
- W4386318824 type Work @default.
- W4386318824 citedByCount "0" @default.
- W4386318824 crossrefType "journal-article" @default.
- W4386318824 hasAuthorship W4386318824A5003799782 @default.
- W4386318824 hasAuthorship W4386318824A5009797333 @default.
- W4386318824 hasAuthorship W4386318824A5018974025 @default.
- W4386318824 hasAuthorship W4386318824A5042905745 @default.
- W4386318824 hasAuthorship W4386318824A5051710693 @default.
- W4386318824 hasAuthorship W4386318824A5059702929 @default.
- W4386318824 hasAuthorship W4386318824A5068823049 @default.
- W4386318824 hasConcept C119857082 @default.
- W4386318824 hasConcept C124101348 @default.
- W4386318824 hasConcept C126838900 @default.
- W4386318824 hasConcept C13280743 @default.
- W4386318824 hasConcept C144133560 @default.
- W4386318824 hasConcept C150899416 @default.
- W4386318824 hasConcept C154945302 @default.
- W4386318824 hasConcept C162853370 @default.
- W4386318824 hasConcept C183115368 @default.
- W4386318824 hasConcept C185798385 @default.
- W4386318824 hasConcept C205649164 @default.
- W4386318824 hasConcept C41008148 @default.
- W4386318824 hasConcept C49937458 @default.
- W4386318824 hasConcept C534262118 @default.
- W4386318824 hasConcept C58166 @default.
- W4386318824 hasConcept C71924100 @default.
- W4386318824 hasConcept C86251818 @default.