Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386319124> ?p ?o ?g. }
- W4386319124 abstract "Abstract Target-based sentiment analysis (TBSA) is one of the most important NLP research topics for widespread applications. However, the task is challenging, especially when the targets contain multiple words or do not exist in the sequences. Conventional approaches cannot accurately extract the (target, sentiment) pairs due to the limitations of the fixed end-to-end architecture design. In this paper, we propose a framework named O $$^2$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -Bert , which consists of O pinion target extraction (OTE-Bert) and O pinion sentiment classification (OSC-Bert) to complete the task in two stages. More specifically, we divide the OTE-Bert into three modules. First, an entity number prediction module predicts the number of entities in a sequence, even in an extreme situation where no entities are contained. Afterwards, with predicted number of entities, an entity starting annotation module is responsible for predicting their starting positions. Finally, an entity length prediction module predicts the lengths of these entities, and thus, accomplishes target extraction. In OSC-Bert, the sentiment polarities of extracted targets from OTE-Bert. According to the characteristics of BERT encoders, our framework can be adapted to short English sequences without domain limitations. For other languages, our approach might work through altering the tokenization. Experimental results on the SemEval 2014-16 benchmarks show that the proposed model achieves competitive performances on both domains (restaurants and laptops) and both tasks (target extraction and sentiment classification), with F1-score as evaluated metrics. Specifically, OTE-Bert achieves 84.63%, 89.20%, 83.16%, and 86.88% F1 scores for target extraction, while OSC-Bert achieves 82.90%, 80.73%, 76.94%, and 83.58% F1 scores for sentiment classification, on the chosen benchmarks. The statistics validate the effectiveness and robustness of our approach and the new “two-stage paradigm”. In future work, we will explore more possibilities of the new paradigm on other NLP tasks." @default.
- W4386319124 created "2023-09-01" @default.
- W4386319124 creator A5001311852 @default.
- W4386319124 creator A5042328954 @default.
- W4386319124 creator A5046615602 @default.
- W4386319124 creator A5047488742 @default.
- W4386319124 creator A5055465628 @default.
- W4386319124 creator A5073501391 @default.
- W4386319124 creator A5075279386 @default.
- W4386319124 date "2023-09-01" @default.
- W4386319124 modified "2023-09-27" @default.
- W4386319124 title "O$$^2$$-Bert: Two-Stage Target-Based Sentiment Analysis" @default.
- W4386319124 cites W2102381086 @default.
- W4386319124 cites W2112744748 @default.
- W4386319124 cites W2160660844 @default.
- W4386319124 cites W2562607067 @default.
- W4386319124 cites W2594568452 @default.
- W4386319124 cites W2739677115 @default.
- W4386319124 cites W2742129161 @default.
- W4386319124 cites W2885204811 @default.
- W4386319124 cites W2898812668 @default.
- W4386319124 cites W2926264417 @default.
- W4386319124 cites W2946015932 @default.
- W4386319124 cites W2948947170 @default.
- W4386319124 cites W2949660355 @default.
- W4386319124 cites W2950404230 @default.
- W4386319124 cites W2971014768 @default.
- W4386319124 cites W2971220558 @default.
- W4386319124 cites W2977233821 @default.
- W4386319124 cites W3028754898 @default.
- W4386319124 cites W3034884160 @default.
- W4386319124 cites W3041999958 @default.
- W4386319124 cites W3100451998 @default.
- W4386319124 cites W3107636542 @default.
- W4386319124 cites W3123212500 @default.
- W4386319124 cites W3163090501 @default.
- W4386319124 cites W3175404808 @default.
- W4386319124 cites W3176920001 @default.
- W4386319124 cites W3180048861 @default.
- W4386319124 cites W3189623885 @default.
- W4386319124 cites W3197636033 @default.
- W4386319124 cites W3212745200 @default.
- W4386319124 cites W4207036168 @default.
- W4386319124 cites W4220693772 @default.
- W4386319124 cites W4224267292 @default.
- W4386319124 cites W4282926504 @default.
- W4386319124 cites W4285732989 @default.
- W4386319124 cites W4317435162 @default.
- W4386319124 cites W4361994600 @default.
- W4386319124 cites W4362544644 @default.
- W4386319124 doi "https://doi.org/10.1007/s12559-023-10191-y" @default.
- W4386319124 hasPublicationYear "2023" @default.
- W4386319124 type Work @default.
- W4386319124 citedByCount "0" @default.
- W4386319124 crossrefType "journal-article" @default.
- W4386319124 hasAuthorship W4386319124A5001311852 @default.
- W4386319124 hasAuthorship W4386319124A5042328954 @default.
- W4386319124 hasAuthorship W4386319124A5046615602 @default.
- W4386319124 hasAuthorship W4386319124A5047488742 @default.
- W4386319124 hasAuthorship W4386319124A5055465628 @default.
- W4386319124 hasAuthorship W4386319124A5073501391 @default.
- W4386319124 hasAuthorship W4386319124A5075279386 @default.
- W4386319124 hasBestOaLocation W43863191241 @default.
- W4386319124 hasConcept C111919701 @default.
- W4386319124 hasConcept C11413529 @default.
- W4386319124 hasConcept C118505674 @default.
- W4386319124 hasConcept C154945302 @default.
- W4386319124 hasConcept C162324750 @default.
- W4386319124 hasConcept C176982825 @default.
- W4386319124 hasConcept C187736073 @default.
- W4386319124 hasConcept C204321447 @default.
- W4386319124 hasConcept C2776321320 @default.
- W4386319124 hasConcept C2780451532 @default.
- W4386319124 hasConcept C41008148 @default.
- W4386319124 hasConcept C66402592 @default.
- W4386319124 hasConceptScore W4386319124C111919701 @default.
- W4386319124 hasConceptScore W4386319124C11413529 @default.
- W4386319124 hasConceptScore W4386319124C118505674 @default.
- W4386319124 hasConceptScore W4386319124C154945302 @default.
- W4386319124 hasConceptScore W4386319124C162324750 @default.
- W4386319124 hasConceptScore W4386319124C176982825 @default.
- W4386319124 hasConceptScore W4386319124C187736073 @default.
- W4386319124 hasConceptScore W4386319124C204321447 @default.
- W4386319124 hasConceptScore W4386319124C2776321320 @default.
- W4386319124 hasConceptScore W4386319124C2780451532 @default.
- W4386319124 hasConceptScore W4386319124C41008148 @default.
- W4386319124 hasConceptScore W4386319124C66402592 @default.
- W4386319124 hasFunder F4320335880 @default.
- W4386319124 hasLocation W43863191241 @default.
- W4386319124 hasOpenAccess W4386319124 @default.
- W4386319124 hasPrimaryLocation W43863191241 @default.
- W4386319124 hasRelatedWork W1579082069 @default.
- W4386319124 hasRelatedWork W2624106077 @default.
- W4386319124 hasRelatedWork W2741700407 @default.
- W4386319124 hasRelatedWork W2784713665 @default.
- W4386319124 hasRelatedWork W2810770359 @default.
- W4386319124 hasRelatedWork W2962949606 @default.
- W4386319124 hasRelatedWork W3092005458 @default.
- W4386319124 hasRelatedWork W3210147767 @default.
- W4386319124 hasRelatedWork W326721179 @default.