Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386319782> ?p ?o ?g. }
- W4386319782 endingPage "107419" @default.
- W4386319782 startingPage "107419" @default.
- W4386319782 abstract "Automatic deep-learning models used for sleep scoring in children with obstructive sleep apnea (OSA) are perceived as black boxes, limiting their implementation in clinical settings. Accordingly, we aimed to develop an accurate and interpretable deep-learning model for sleep staging in children using single-channel electroencephalogram (EEG) recordings. We used EEG signals from the Childhood Adenotonsillectomy Trial (CHAT) dataset (n = 1637) and a clinical sleep database (n = 980). Three distinct deep-learning architectures were explored to automatically classify sleep stages from a single-channel EEG data. Gradient-weighted Class Activation Mapping (Grad-CAM), an explainable artificial intelligence (XAI) algorithm, was then applied to provide an interpretation of the singular EEG patterns contributing to each predicted sleep stage. Among the tested architectures, a standard convolutional neural network (CNN) demonstrated the highest performance for automated sleep stage detection in the CHAT test set (accuracy = 86.9% and five-class kappa = 0.827). Furthermore, the CNN-based estimation of total sleep time exhibited strong agreement in the clinical dataset (intra-class correlation coefficient = 0.772). Our XAI approach using Grad-CAM effectively highlighted the EEG features associated with each sleep stage, emphasizing their influence on the CNN's decision-making process in both datasets. Grad-CAM heatmaps also allowed to identify and analyze epochs within a recording with a highly likelihood to be misclassified, revealing mixed features from different sleep stages within these epochs. Finally, Grad-CAM heatmaps unveiled novel features contributing to sleep scoring using a single EEG channel. Consequently, integrating an explainable CNN-based deep-learning model in the clinical environment could enable automatic sleep staging in pediatric sleep apnea tests." @default.
- W4386319782 created "2023-09-01" @default.
- W4386319782 creator A5005396204 @default.
- W4386319782 creator A5012085808 @default.
- W4386319782 creator A5016104659 @default.
- W4386319782 creator A5026434545 @default.
- W4386319782 creator A5028348554 @default.
- W4386319782 creator A5038079734 @default.
- W4386319782 creator A5043513390 @default.
- W4386319782 creator A5091370751 @default.
- W4386319782 date "2023-10-01" @default.
- W4386319782 modified "2023-09-28" @default.
- W4386319782 title "An explainable deep-learning model to stage sleep states in children and propose novel EEG-related patterns in sleep apnea" @default.
- W4386319782 cites W118211727 @default.
- W4386319782 cites W1994663431 @default.
- W4386319782 cites W2026761333 @default.
- W4386319782 cites W2061276287 @default.
- W4386319782 cites W2106512780 @default.
- W4386319782 cites W2107391591 @default.
- W4386319782 cites W2140033730 @default.
- W4386319782 cites W2163166459 @default.
- W4386319782 cites W2790486743 @default.
- W4386319782 cites W2792429360 @default.
- W4386319782 cites W2891503716 @default.
- W4386319782 cites W2892035503 @default.
- W4386319782 cites W2893192409 @default.
- W4386319782 cites W2902751862 @default.
- W4386319782 cites W2904418346 @default.
- W4386319782 cites W2943501917 @default.
- W4386319782 cites W2953828432 @default.
- W4386319782 cites W2959442417 @default.
- W4386319782 cites W2963915399 @default.
- W4386319782 cites W2969159609 @default.
- W4386319782 cites W2999666603 @default.
- W4386319782 cites W3032135501 @default.
- W4386319782 cites W3035374448 @default.
- W4386319782 cites W3081446688 @default.
- W4386319782 cites W3110942752 @default.
- W4386319782 cites W3114734335 @default.
- W4386319782 cites W3133023614 @default.
- W4386319782 cites W3156463266 @default.
- W4386319782 cites W3165396901 @default.
- W4386319782 cites W3171177453 @default.
- W4386319782 cites W3183842266 @default.
- W4386319782 cites W3186929955 @default.
- W4386319782 cites W3189411510 @default.
- W4386319782 cites W3194627432 @default.
- W4386319782 cites W3196321691 @default.
- W4386319782 cites W3215417281 @default.
- W4386319782 cites W3217139813 @default.
- W4386319782 cites W4200176337 @default.
- W4386319782 cites W4214515453 @default.
- W4386319782 cites W4220866041 @default.
- W4386319782 cites W4220988906 @default.
- W4386319782 cites W4280560585 @default.
- W4386319782 cites W4283704670 @default.
- W4386319782 cites W4293223411 @default.
- W4386319782 cites W4295440221 @default.
- W4386319782 cites W4312900906 @default.
- W4386319782 cites W4316259376 @default.
- W4386319782 cites W4316654912 @default.
- W4386319782 cites W4365484973 @default.
- W4386319782 cites W4365515879 @default.
- W4386319782 cites W4381785857 @default.
- W4386319782 doi "https://doi.org/10.1016/j.compbiomed.2023.107419" @default.
- W4386319782 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37703716" @default.
- W4386319782 hasPublicationYear "2023" @default.
- W4386319782 type Work @default.
- W4386319782 citedByCount "0" @default.
- W4386319782 crossrefType "journal-article" @default.
- W4386319782 hasAuthorship W4386319782A5005396204 @default.
- W4386319782 hasAuthorship W4386319782A5012085808 @default.
- W4386319782 hasAuthorship W4386319782A5016104659 @default.
- W4386319782 hasAuthorship W4386319782A5026434545 @default.
- W4386319782 hasAuthorship W4386319782A5028348554 @default.
- W4386319782 hasAuthorship W4386319782A5038079734 @default.
- W4386319782 hasAuthorship W4386319782A5043513390 @default.
- W4386319782 hasAuthorship W4386319782A5091370751 @default.
- W4386319782 hasBestOaLocation W43863197821 @default.
- W4386319782 hasConcept C108583219 @default.
- W4386319782 hasConcept C111919701 @default.
- W4386319782 hasConcept C118552586 @default.
- W4386319782 hasConcept C119857082 @default.
- W4386319782 hasConcept C153180895 @default.
- W4386319782 hasConcept C154945302 @default.
- W4386319782 hasConcept C15744967 @default.
- W4386319782 hasConcept C164705383 @default.
- W4386319782 hasConcept C169258074 @default.
- W4386319782 hasConcept C2775841894 @default.
- W4386319782 hasConcept C2777935920 @default.
- W4386319782 hasConcept C2778205975 @default.
- W4386319782 hasConcept C2910364982 @default.
- W4386319782 hasConcept C41008148 @default.
- W4386319782 hasConcept C522805319 @default.
- W4386319782 hasConcept C71924100 @default.
- W4386319782 hasConcept C81363708 @default.
- W4386319782 hasConceptScore W4386319782C108583219 @default.
- W4386319782 hasConceptScore W4386319782C111919701 @default.