Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386319789> ?p ?o ?g. }
- W4386319789 endingPage "147755" @default.
- W4386319789 startingPage "147755" @default.
- W4386319789 abstract "Obesity is a complex condition that is affected by a variety of factors, including the environment, behavior, and genetics. However, the genetic mechanisms underlying obesity remains poorly elucidated. Therefore, our study aimed at identifying key genes for human obesity using bioinformatics analysis.The microarray datasets of adipose tissue in humans were downloaded from the Gene Expression Omnibus (GEO) database. After the selection of differentially expressed genes (DEGs), we used Lasso regression and Support Vector Machine (SVM) algorithm to further identify the feature genes. Moreover, immune cell infiltration analysis, gene set variation analysis (GSVA), GeneCards database and transcriptional regulation analysis were conducted to study the potential mechanisms by which the feature genes may impact obesity. We utilized receiver operating characteristic (ROC) curve to analysis the diagnostic efficacy of feature genes. Finally, we verified the feature genes in cell experiments and animal experiments. The statistical analyses in validation experiments were conducted using SPSS version 28.0, and the graph were generated using GraphPad Prism 9.0 software. The bioinformatics analyses were conducted using R language (version 4.2.2), with a significance threshold of p < 0.05 used.199 DEGs were selected using Limma package, and subsequently, 5 feature genes (EGR2, NPY1R, GREM1, BMP3 and COL8A1) were selected through Lasso regression and SVM algorithm. Through various bioinformatics analyses, we found some signaling pathways by which feature genes influence obesity and also revealed the crucial role of these genes in the immune microenvironment, as well as their strong correlations with obesity-related genes. Additionally, ROC curve showed that all the feature genes had good predictive and diagnostic efficiency in obesity. Finally, after validation through in vitro experiments, EGR2, NPY1R and GREM1 were identified as the key genes.This study identified EGR2, GREM1 and NPY1R as the potential key genes and potential diagnostic biomarkers for obesity in humans. Moreover, EGR2 was discovered as a key gene for obesity in human adipose tissue for the first time, which may provide novel targets for diagnosing and treating obesity." @default.
- W4386319789 created "2023-09-01" @default.
- W4386319789 creator A5001486182 @default.
- W4386319789 creator A5002124900 @default.
- W4386319789 creator A5005908217 @default.
- W4386319789 creator A5058502781 @default.
- W4386319789 creator A5071389166 @default.
- W4386319789 creator A5072899735 @default.
- W4386319789 date "2023-12-01" @default.
- W4386319789 modified "2023-10-17" @default.
- W4386319789 title "Identification and analysis of key genes in adipose tissue for human obesity based on bioinformatics" @default.
- W4386319789 cites W1420654867 @default.
- W4386319789 cites W1749413658 @default.
- W4386319789 cites W1967257827 @default.
- W4386319789 cites W1996175687 @default.
- W4386319789 cites W1998451170 @default.
- W4386319789 cites W1998493877 @default.
- W4386319789 cites W2011869246 @default.
- W4386319789 cites W2024292392 @default.
- W4386319789 cites W2039421379 @default.
- W4386319789 cites W2061203824 @default.
- W4386319789 cites W2115993496 @default.
- W4386319789 cites W2124653803 @default.
- W4386319789 cites W2127555681 @default.
- W4386319789 cites W2129316761 @default.
- W4386319789 cites W2130410032 @default.
- W4386319789 cites W2152988512 @default.
- W4386319789 cites W2156865358 @default.
- W4386319789 cites W2466660746 @default.
- W4386319789 cites W2550190683 @default.
- W4386319789 cites W2564008456 @default.
- W4386319789 cites W2593816418 @default.
- W4386319789 cites W2606592708 @default.
- W4386319789 cites W2620735895 @default.
- W4386319789 cites W2728701251 @default.
- W4386319789 cites W2749609440 @default.
- W4386319789 cites W2778880534 @default.
- W4386319789 cites W2979971613 @default.
- W4386319789 cites W2991373947 @default.
- W4386319789 cites W2998531362 @default.
- W4386319789 cites W3012775092 @default.
- W4386319789 cites W3030834164 @default.
- W4386319789 cites W3031302918 @default.
- W4386319789 cites W3049591885 @default.
- W4386319789 cites W3117237609 @default.
- W4386319789 cites W3163061793 @default.
- W4386319789 cites W3198259760 @default.
- W4386319789 cites W4200199786 @default.
- W4386319789 cites W4220666182 @default.
- W4386319789 cites W4224296098 @default.
- W4386319789 cites W4249727000 @default.
- W4386319789 cites W4283790335 @default.
- W4386319789 cites W4292641511 @default.
- W4386319789 cites W4294916334 @default.
- W4386319789 cites W4296481642 @default.
- W4386319789 cites W4323044275 @default.
- W4386319789 cites W4384661646 @default.
- W4386319789 doi "https://doi.org/10.1016/j.gene.2023.147755" @default.
- W4386319789 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37659596" @default.
- W4386319789 hasPublicationYear "2023" @default.
- W4386319789 type Work @default.
- W4386319789 citedByCount "0" @default.
- W4386319789 crossrefType "journal-article" @default.
- W4386319789 hasAuthorship W4386319789A5001486182 @default.
- W4386319789 hasAuthorship W4386319789A5002124900 @default.
- W4386319789 hasAuthorship W4386319789A5005908217 @default.
- W4386319789 hasAuthorship W4386319789A5058502781 @default.
- W4386319789 hasAuthorship W4386319789A5071389166 @default.
- W4386319789 hasAuthorship W4386319789A5072899735 @default.
- W4386319789 hasBestOaLocation W43863197891 @default.
- W4386319789 hasConcept C104317684 @default.
- W4386319789 hasConcept C119857082 @default.
- W4386319789 hasConcept C12267149 @default.
- W4386319789 hasConcept C136764020 @default.
- W4386319789 hasConcept C148483581 @default.
- W4386319789 hasConcept C150194340 @default.
- W4386319789 hasConcept C186836561 @default.
- W4386319789 hasConcept C37616216 @default.
- W4386319789 hasConcept C41008148 @default.
- W4386319789 hasConcept C54355233 @default.
- W4386319789 hasConcept C60644358 @default.
- W4386319789 hasConcept C70721500 @default.
- W4386319789 hasConcept C8415881 @default.
- W4386319789 hasConcept C86803240 @default.
- W4386319789 hasConcept C95371953 @default.
- W4386319789 hasConceptScore W4386319789C104317684 @default.
- W4386319789 hasConceptScore W4386319789C119857082 @default.
- W4386319789 hasConceptScore W4386319789C12267149 @default.
- W4386319789 hasConceptScore W4386319789C136764020 @default.
- W4386319789 hasConceptScore W4386319789C148483581 @default.
- W4386319789 hasConceptScore W4386319789C150194340 @default.
- W4386319789 hasConceptScore W4386319789C186836561 @default.
- W4386319789 hasConceptScore W4386319789C37616216 @default.
- W4386319789 hasConceptScore W4386319789C41008148 @default.
- W4386319789 hasConceptScore W4386319789C54355233 @default.
- W4386319789 hasConceptScore W4386319789C60644358 @default.
- W4386319789 hasConceptScore W4386319789C70721500 @default.
- W4386319789 hasConceptScore W4386319789C8415881 @default.