Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386322177> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4386322177 endingPage "e0290989" @default.
- W4386322177 startingPage "e0290989" @default.
- W4386322177 abstract "A novel breast ultrasound tomography system based on a circular array of capacitive micromechanical ultrasound transducers (CMUT) has broad application prospects. However, the images produced by this system are not suitable as input for the training phase of the super-resolution (SR) reconstruction algorithm. To solve the problem, this paper proposes an improved medical image super-resolution (MeSR) method based on the sparse domain. First, we use the simultaneous algebraic reconstruction technique (SART) with high imaging accuracy to reconstruct the image into a training image in a sparse domain model. Secondly, we denoise and enhance the contrast of the SART images to obtain improved detail images before training the dictionary. Then, we use the original detail image as the guide image to further process the improved detail image. Therefore, a high-precision dictionary was obtained during the testing phase and applied to filtered back projection SR reconstruction. We compared the proposed algorithm with previously reported algorithms in the Shepp Logan model and the model based on the CMUT background. The results showed significant improvements in peak signal-to-noise ratio, entropy, and average gradient compared to previously reported algorithms. The experimental results demonstrated that the proposed MeSR method can use noisy reconstructed images as input for the training phase of the SR algorithm and produce excellent visual effects." @default.
- W4386322177 created "2023-09-01" @default.
- W4386322177 creator A5014986542 @default.
- W4386322177 creator A5034942869 @default.
- W4386322177 creator A5037855900 @default.
- W4386322177 creator A5053939322 @default.
- W4386322177 creator A5058635278 @default.
- W4386322177 creator A5068293265 @default.
- W4386322177 creator A5090169994 @default.
- W4386322177 date "2023-08-31" @default.
- W4386322177 modified "2023-09-29" @default.
- W4386322177 title "Improved sparse domain super-resolution reconstruction algorithm based on CMUT" @default.
- W4386322177 cites W1791560514 @default.
- W4386322177 cites W1885185971 @default.
- W4386322177 cites W1964520071 @default.
- W4386322177 cites W1999268995 @default.
- W4386322177 cites W2024298498 @default.
- W4386322177 cites W2049237558 @default.
- W4386322177 cites W2057328741 @default.
- W4386322177 cites W2121058967 @default.
- W4386322177 cites W2125188192 @default.
- W4386322177 cites W2149079700 @default.
- W4386322177 cites W2162473564 @default.
- W4386322177 cites W2163935418 @default.
- W4386322177 cites W2615438734 @default.
- W4386322177 cites W2791851475 @default.
- W4386322177 cites W2793154749 @default.
- W4386322177 cites W2913294167 @default.
- W4386322177 cites W2954527099 @default.
- W4386322177 cites W3033502122 @default.
- W4386322177 cites W3083579885 @default.
- W4386322177 cites W3088115487 @default.
- W4386322177 cites W3126069796 @default.
- W4386322177 cites W3185738592 @default.
- W4386322177 cites W3193644412 @default.
- W4386322177 cites W3216664660 @default.
- W4386322177 cites W4225942666 @default.
- W4386322177 cites W4240518936 @default.
- W4386322177 cites W4249286716 @default.
- W4386322177 cites W4255201932 @default.
- W4386322177 doi "https://doi.org/10.1371/journal.pone.0290989" @default.
- W4386322177 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37651438" @default.
- W4386322177 hasPublicationYear "2023" @default.
- W4386322177 type Work @default.
- W4386322177 citedByCount "0" @default.
- W4386322177 crossrefType "journal-article" @default.
- W4386322177 hasAuthorship W4386322177A5014986542 @default.
- W4386322177 hasAuthorship W4386322177A5034942869 @default.
- W4386322177 hasAuthorship W4386322177A5037855900 @default.
- W4386322177 hasAuthorship W4386322177A5053939322 @default.
- W4386322177 hasAuthorship W4386322177A5058635278 @default.
- W4386322177 hasAuthorship W4386322177A5068293265 @default.
- W4386322177 hasAuthorship W4386322177A5090169994 @default.
- W4386322177 hasBestOaLocation W43863221771 @default.
- W4386322177 hasConcept C11413529 @default.
- W4386322177 hasConcept C141379421 @default.
- W4386322177 hasConcept C154945302 @default.
- W4386322177 hasConcept C205372480 @default.
- W4386322177 hasConcept C2779898584 @default.
- W4386322177 hasConcept C31972630 @default.
- W4386322177 hasConcept C41008148 @default.
- W4386322177 hasConceptScore W4386322177C11413529 @default.
- W4386322177 hasConceptScore W4386322177C141379421 @default.
- W4386322177 hasConceptScore W4386322177C154945302 @default.
- W4386322177 hasConceptScore W4386322177C205372480 @default.
- W4386322177 hasConceptScore W4386322177C2779898584 @default.
- W4386322177 hasConceptScore W4386322177C31972630 @default.
- W4386322177 hasConceptScore W4386322177C41008148 @default.
- W4386322177 hasFunder F4320321001 @default.
- W4386322177 hasIssue "8" @default.
- W4386322177 hasLocation W43863221771 @default.
- W4386322177 hasLocation W43863221772 @default.
- W4386322177 hasOpenAccess W4386322177 @default.
- W4386322177 hasPrimaryLocation W43863221771 @default.
- W4386322177 hasRelatedWork W1604511055 @default.
- W4386322177 hasRelatedWork W2026847083 @default.
- W4386322177 hasRelatedWork W2116558684 @default.
- W4386322177 hasRelatedWork W2130109816 @default.
- W4386322177 hasRelatedWork W2147047527 @default.
- W4386322177 hasRelatedWork W2164918837 @default.
- W4386322177 hasRelatedWork W2177676267 @default.
- W4386322177 hasRelatedWork W2280716820 @default.
- W4386322177 hasRelatedWork W2517246325 @default.
- W4386322177 hasRelatedWork W2753113106 @default.
- W4386322177 hasVolume "18" @default.
- W4386322177 isParatext "false" @default.
- W4386322177 isRetracted "false" @default.
- W4386322177 workType "article" @default.