Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386322234> ?p ?o ?g. }
- W4386322234 endingPage "15" @default.
- W4386322234 startingPage "1" @default.
- W4386322234 abstract "Deep learning has emerged as a powerful method for hyperspectral image (HSI) classification. However, a significant prerequisite for HSI classification using deep learning is enough labeled samples, which is both time-consuming and labor-intensive. Yet, labeled samples are essential for training deep learning models. This paper proposes an HSI classification method based on the self-supervised learning of spectral masking (SSLSM). The method mainly includes two steps: self-supervised pre-training and fine-tuning. First, considering the rich spectral information of HSI, we propose masked spectral reconstruction as the pretext task. The unmasked data is input into the encoder and decoder sequentially, which are composed of a multi-layer transformer, for feature learning for masked spectral reconstruction. Second, we use reference samples to fine-tune the network, and the encoder and decoder are innovatively cascaded for deep semantic feature extraction, which can further improve the ability of feature extraction in the downstream classification tasks. Experiment results show that, compared with other methods, the SSLSM obtains the highest classification accuracy of 96.52%, 97.03%, and 96.70% on the Indian Pines dataset, Pavia University dataset, and Yancheng Wetlands dataset, respectively. Our method can also be applied to other HSI datasets, and the codes will be available from https://github.com/CIRSM-GRoup/2023-TGRS-SSLSM." @default.
- W4386322234 created "2023-09-01" @default.
- W4386322234 creator A5015672146 @default.
- W4386322234 creator A5018282808 @default.
- W4386322234 creator A5025466321 @default.
- W4386322234 creator A5036030486 @default.
- W4386322234 creator A5050009113 @default.
- W4386322234 creator A5074018705 @default.
- W4386322234 creator A5081467993 @default.
- W4386322234 date "2023-01-01" @default.
- W4386322234 modified "2023-10-15" @default.
- W4386322234 title "Self-Supervised Feature Learning based on Spectral Masking for Hyperspectral Image Classification" @default.
- W4386322234 cites W1521436688 @default.
- W4386322234 cites W2076462394 @default.
- W4386322234 cites W2077028485 @default.
- W4386322234 cites W2114819256 @default.
- W4386322234 cites W2122111042 @default.
- W4386322234 cites W2136251662 @default.
- W4386322234 cites W2152057649 @default.
- W4386322234 cites W2164330327 @default.
- W4386322234 cites W2500751094 @default.
- W4386322234 cites W2600746131 @default.
- W4386322234 cites W2614326984 @default.
- W4386322234 cites W2764276316 @default.
- W4386322234 cites W2767651786 @default.
- W4386322234 cites W2790275230 @default.
- W4386322234 cites W2794284562 @default.
- W4386322234 cites W2888119354 @default.
- W4386322234 cites W2891059222 @default.
- W4386322234 cites W2898204262 @default.
- W4386322234 cites W2911964244 @default.
- W4386322234 cites W2914331134 @default.
- W4386322234 cites W2940678725 @default.
- W4386322234 cites W2941387379 @default.
- W4386322234 cites W2944653015 @default.
- W4386322234 cites W2963420272 @default.
- W4386322234 cites W2971432438 @default.
- W4386322234 cites W2991286101 @default.
- W4386322234 cites W2991616716 @default.
- W4386322234 cites W2998920459 @default.
- W4386322234 cites W3047443805 @default.
- W4386322234 cites W3084280717 @default.
- W4386322234 cites W3095270930 @default.
- W4386322234 cites W3099850646 @default.
- W4386322234 cites W3133271982 @default.
- W4386322234 cites W3201461236 @default.
- W4386322234 cites W3205614732 @default.
- W4386322234 cites W3206909760 @default.
- W4386322234 cites W3214821343 @default.
- W4386322234 cites W343636949 @default.
- W4386322234 cites W4206307542 @default.
- W4386322234 cites W4210794570 @default.
- W4386322234 cites W4220853886 @default.
- W4386322234 cites W4226182700 @default.
- W4386322234 cites W4240485910 @default.
- W4386322234 cites W4283760989 @default.
- W4386322234 cites W4285124290 @default.
- W4386322234 cites W4285127355 @default.
- W4386322234 cites W4285195596 @default.
- W4386322234 cites W4285269366 @default.
- W4386322234 cites W4285277843 @default.
- W4386322234 cites W4285296445 @default.
- W4386322234 cites W4290755636 @default.
- W4386322234 cites W4291727297 @default.
- W4386322234 cites W4292058731 @default.
- W4386322234 cites W4295532867 @default.
- W4386322234 cites W4309367935 @default.
- W4386322234 cites W4312743284 @default.
- W4386322234 cites W4313229425 @default.
- W4386322234 cites W4318586076 @default.
- W4386322234 cites W4321484009 @default.
- W4386322234 cites W4353066998 @default.
- W4386322234 cites W4365420606 @default.
- W4386322234 doi "https://doi.org/10.1109/tgrs.2023.3310489" @default.
- W4386322234 hasPublicationYear "2023" @default.
- W4386322234 type Work @default.
- W4386322234 citedByCount "0" @default.
- W4386322234 crossrefType "journal-article" @default.
- W4386322234 hasAuthorship W4386322234A5015672146 @default.
- W4386322234 hasAuthorship W4386322234A5018282808 @default.
- W4386322234 hasAuthorship W4386322234A5025466321 @default.
- W4386322234 hasAuthorship W4386322234A5036030486 @default.
- W4386322234 hasAuthorship W4386322234A5050009113 @default.
- W4386322234 hasAuthorship W4386322234A5074018705 @default.
- W4386322234 hasAuthorship W4386322234A5081467993 @default.
- W4386322234 hasConcept C108583219 @default.
- W4386322234 hasConcept C115961682 @default.
- W4386322234 hasConcept C138885662 @default.
- W4386322234 hasConcept C153180895 @default.
- W4386322234 hasConcept C154945302 @default.
- W4386322234 hasConcept C159078339 @default.
- W4386322234 hasConcept C2776401178 @default.
- W4386322234 hasConcept C41008148 @default.
- W4386322234 hasConcept C41895202 @default.
- W4386322234 hasConcept C52622490 @default.
- W4386322234 hasConcept C59404180 @default.
- W4386322234 hasConcept C75294576 @default.
- W4386322234 hasConceptScore W4386322234C108583219 @default.