Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386322864> ?p ?o ?g. }
- W4386322864 endingPage "118895" @default.
- W4386322864 startingPage "118895" @default.
- W4386322864 abstract "Over the past decade, there has been a substantial increase in research investigating the potential of graphitic carbon nitride (g-C3N4) for various environmental remediations. Renowned for its photocatalytic activity under visible light, g-C3N4 offers a promising solution for treating water pollutants. However, traditional g–C3N4–based photocatalysts have inherent drawbacks, creating a disparity between laboratory efficacy and real-world applications. A primary practical challenge is their fine-powdered form, which hinders separation and recycling processes. A promising approach to address these challenges involves integrating magnetic or floating materials into conventional photocatalysts, a strategy gaining traction within the g–C3N4–based photocatalyst arena. Another emerging solution to enhance practical applications entails merging experimental results with contemporary computational methods. This synergy seeks to optimize the synthesis of more efficient photocatalysts and pinpoint optimal conditions for pollutant removal. While numerous review articles discuss the laboratory-based photocatalytic applications of g–C3N4–based materials, there is a conspicuous absence of comprehensive coverage regarding state-of-the-art research on improved g–C3N4–based photocatalysts for practical applications. This review fills this void, spotlighting three pivotal domains: magnetic g-C3N4 photocatalysts, floating g-C3N4 photocatalysts, and the application of machine learning to g-C3N4 photocatalysis. Accompanied by a thorough analysis, this review also provides perspectives on future directions to enhance the efficacy of g–C3N4–based photocatalysts in water purification." @default.
- W4386322864 created "2023-09-01" @default.
- W4386322864 creator A5000908376 @default.
- W4386322864 creator A5022231076 @default.
- W4386322864 creator A5028355700 @default.
- W4386322864 date "2023-11-01" @default.
- W4386322864 modified "2023-10-14" @default.
- W4386322864 title "Recent advances in g–C3N4–based photocatalysis for water treatment: Magnetic and floating photocatalysts, and applications of machine-learning techniques" @default.
- W4386322864 cites W1606842125 @default.
- W4386322864 cites W1849523665 @default.
- W4386322864 cites W1870266238 @default.
- W4386322864 cites W2022993631 @default.
- W4386322864 cites W2033829444 @default.
- W4386322864 cites W2078107904 @default.
- W4386322864 cites W2134187077 @default.
- W4386322864 cites W2175973147 @default.
- W4386322864 cites W2356179055 @default.
- W4386322864 cites W2400589155 @default.
- W4386322864 cites W2410936082 @default.
- W4386322864 cites W2462037391 @default.
- W4386322864 cites W2467767403 @default.
- W4386322864 cites W2508310648 @default.
- W4386322864 cites W2570068991 @default.
- W4386322864 cites W2597424210 @default.
- W4386322864 cites W2605138270 @default.
- W4386322864 cites W2753638062 @default.
- W4386322864 cites W2755341347 @default.
- W4386322864 cites W2765989323 @default.
- W4386322864 cites W2776917016 @default.
- W4386322864 cites W2791459656 @default.
- W4386322864 cites W2793071371 @default.
- W4386322864 cites W2884444291 @default.
- W4386322864 cites W2893373934 @default.
- W4386322864 cites W2907216732 @default.
- W4386322864 cites W2914714687 @default.
- W4386322864 cites W2915566059 @default.
- W4386322864 cites W2954885243 @default.
- W4386322864 cites W2967408290 @default.
- W4386322864 cites W2992270265 @default.
- W4386322864 cites W3000371125 @default.
- W4386322864 cites W3012199899 @default.
- W4386322864 cites W3019349510 @default.
- W4386322864 cites W3021451545 @default.
- W4386322864 cites W3023669649 @default.
- W4386322864 cites W3027768720 @default.
- W4386322864 cites W3028905156 @default.
- W4386322864 cites W3029015155 @default.
- W4386322864 cites W3033923364 @default.
- W4386322864 cites W3045203569 @default.
- W4386322864 cites W3047516781 @default.
- W4386322864 cites W3054708954 @default.
- W4386322864 cites W3075381699 @default.
- W4386322864 cites W3080820506 @default.
- W4386322864 cites W3081529317 @default.
- W4386322864 cites W3091182886 @default.
- W4386322864 cites W3096056961 @default.
- W4386322864 cites W3129292290 @default.
- W4386322864 cites W3139475018 @default.
- W4386322864 cites W3157149188 @default.
- W4386322864 cites W3159062945 @default.
- W4386322864 cites W3191853142 @default.
- W4386322864 cites W3200127400 @default.
- W4386322864 cites W3204285738 @default.
- W4386322864 cites W3204717830 @default.
- W4386322864 cites W4205864728 @default.
- W4386322864 cites W4210618934 @default.
- W4386322864 cites W4214924229 @default.
- W4386322864 cites W4220791452 @default.
- W4386322864 cites W4235910313 @default.
- W4386322864 cites W4281756564 @default.
- W4386322864 cites W4282942520 @default.
- W4386322864 cites W4294151938 @default.
- W4386322864 cites W4295012153 @default.
- W4386322864 cites W4300772628 @default.
- W4386322864 cites W4306778061 @default.
- W4386322864 cites W4307896653 @default.
- W4386322864 cites W4308151668 @default.
- W4386322864 cites W4309340099 @default.
- W4386322864 cites W4309628763 @default.
- W4386322864 cites W4312129625 @default.
- W4386322864 cites W4362716368 @default.
- W4386322864 cites W4366825029 @default.
- W4386322864 cites W4368351343 @default.
- W4386322864 doi "https://doi.org/10.1016/j.jenvman.2023.118895" @default.
- W4386322864 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37659370" @default.
- W4386322864 hasPublicationYear "2023" @default.
- W4386322864 type Work @default.
- W4386322864 citedByCount "0" @default.
- W4386322864 crossrefType "journal-article" @default.
- W4386322864 hasAuthorship W4386322864A5000908376 @default.
- W4386322864 hasAuthorship W4386322864A5022231076 @default.
- W4386322864 hasAuthorship W4386322864A5028355700 @default.
- W4386322864 hasConcept C127413603 @default.
- W4386322864 hasConcept C161790260 @default.
- W4386322864 hasConcept C171250308 @default.
- W4386322864 hasConcept C178790620 @default.
- W4386322864 hasConcept C183696295 @default.
- W4386322864 hasConcept C185592680 @default.