Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386324917> ?p ?o ?g. }
- W4386324917 endingPage "7546" @default.
- W4386324917 startingPage "7546" @default.
- W4386324917 abstract "In this work, we present a diagnosis system for rolling bearings that leverages simultaneous measurements of vibrations and machine rotation speed. Our approach combines the robustness of simple time domain methods for fault detection with the potential of machine learning techniques for fault location. This research is based on a neural network classifier, which exploits a simple and novel preprocessing algorithm specifically designed for minimizing the dependency of the classifier performance on the machine working conditions, on the bearing model and on the acquisition system set-up. The overall diagnosis system is based on light algorithms with reduced complexity and hardware resource demand and is designed to be deployed in embedded electronics. The fault diagnosis system was trained using emulated data, exploiting an ad-hoc test bench thus avoiding the problem of generating enough data, achieving an overall classifier accuracy larger than 98%. Its noteworthy ability to generalize was proven by using data emulating different working conditions and acquisition set-ups and noise levels, obtaining in all the cases accuracies greater than 97%, thereby proving in this way that the proposed system can be applied in a wide spectrum of different applications. Finally, real data from an on-line database containing vibration signals obtained in a completely different scenario are used to demonstrate the distinctive capability of the proposed system to generalize." @default.
- W4386324917 created "2023-09-01" @default.
- W4386324917 creator A5005523277 @default.
- W4386324917 creator A5006110526 @default.
- W4386324917 creator A5011072460 @default.
- W4386324917 creator A5076956231 @default.
- W4386324917 date "2023-08-30" @default.
- W4386324917 modified "2023-09-27" @default.
- W4386324917 title "A Low Complexity Rolling Bearing Diagnosis Technique Based on Machine Learning and Smart Preprocessing" @default.
- W4386324917 cites W1978654022 @default.
- W4386324917 cites W1993646015 @default.
- W4386324917 cites W2002106843 @default.
- W4386324917 cites W2013124207 @default.
- W4386324917 cites W2032950115 @default.
- W4386324917 cites W2058983449 @default.
- W4386324917 cites W2097412031 @default.
- W4386324917 cites W2263083964 @default.
- W4386324917 cites W2273817119 @default.
- W4386324917 cites W2317595875 @default.
- W4386324917 cites W2592902783 @default.
- W4386324917 cites W2622302044 @default.
- W4386324917 cites W2737632267 @default.
- W4386324917 cites W2754762316 @default.
- W4386324917 cites W2790565135 @default.
- W4386324917 cites W2793062918 @default.
- W4386324917 cites W2810292802 @default.
- W4386324917 cites W2886574666 @default.
- W4386324917 cites W2893076595 @default.
- W4386324917 cites W2900791983 @default.
- W4386324917 cites W2912412749 @default.
- W4386324917 cites W2916064970 @default.
- W4386324917 cites W3008819860 @default.
- W4386324917 cites W3022604663 @default.
- W4386324917 cites W3170591781 @default.
- W4386324917 cites W4200410161 @default.
- W4386324917 cites W4200535172 @default.
- W4386324917 cites W4210387613 @default.
- W4386324917 cites W4210727305 @default.
- W4386324917 cites W4252062783 @default.
- W4386324917 cites W4253290211 @default.
- W4386324917 cites W4286572031 @default.
- W4386324917 cites W4294235613 @default.
- W4386324917 cites W4313389027 @default.
- W4386324917 cites W4319158023 @default.
- W4386324917 cites W4385431515 @default.
- W4386324917 cites W4385454438 @default.
- W4386324917 doi "https://doi.org/10.3390/s23177546" @default.
- W4386324917 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37688002" @default.
- W4386324917 hasPublicationYear "2023" @default.
- W4386324917 type Work @default.
- W4386324917 citedByCount "0" @default.
- W4386324917 crossrefType "journal-article" @default.
- W4386324917 hasAuthorship W4386324917A5005523277 @default.
- W4386324917 hasAuthorship W4386324917A5006110526 @default.
- W4386324917 hasAuthorship W4386324917A5011072460 @default.
- W4386324917 hasAuthorship W4386324917A5076956231 @default.
- W4386324917 hasBestOaLocation W43863249171 @default.
- W4386324917 hasConcept C104317684 @default.
- W4386324917 hasConcept C10551718 @default.
- W4386324917 hasConcept C111919701 @default.
- W4386324917 hasConcept C119857082 @default.
- W4386324917 hasConcept C149635348 @default.
- W4386324917 hasConcept C154945302 @default.
- W4386324917 hasConcept C163985040 @default.
- W4386324917 hasConcept C185592680 @default.
- W4386324917 hasConcept C2776266606 @default.
- W4386324917 hasConcept C34736171 @default.
- W4386324917 hasConcept C41008148 @default.
- W4386324917 hasConcept C50644808 @default.
- W4386324917 hasConcept C55493867 @default.
- W4386324917 hasConcept C63479239 @default.
- W4386324917 hasConcept C95623464 @default.
- W4386324917 hasConceptScore W4386324917C104317684 @default.
- W4386324917 hasConceptScore W4386324917C10551718 @default.
- W4386324917 hasConceptScore W4386324917C111919701 @default.
- W4386324917 hasConceptScore W4386324917C119857082 @default.
- W4386324917 hasConceptScore W4386324917C149635348 @default.
- W4386324917 hasConceptScore W4386324917C154945302 @default.
- W4386324917 hasConceptScore W4386324917C163985040 @default.
- W4386324917 hasConceptScore W4386324917C185592680 @default.
- W4386324917 hasConceptScore W4386324917C2776266606 @default.
- W4386324917 hasConceptScore W4386324917C34736171 @default.
- W4386324917 hasConceptScore W4386324917C41008148 @default.
- W4386324917 hasConceptScore W4386324917C50644808 @default.
- W4386324917 hasConceptScore W4386324917C55493867 @default.
- W4386324917 hasConceptScore W4386324917C63479239 @default.
- W4386324917 hasConceptScore W4386324917C95623464 @default.
- W4386324917 hasIssue "17" @default.
- W4386324917 hasLocation W43863249171 @default.
- W4386324917 hasLocation W43863249172 @default.
- W4386324917 hasOpenAccess W4386324917 @default.
- W4386324917 hasPrimaryLocation W43863249171 @default.
- W4386324917 hasRelatedWork W1986684738 @default.
- W4386324917 hasRelatedWork W2093274818 @default.
- W4386324917 hasRelatedWork W2382928216 @default.
- W4386324917 hasRelatedWork W2517235427 @default.
- W4386324917 hasRelatedWork W2556319748 @default.
- W4386324917 hasRelatedWork W2735953229 @default.