Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386324923> ?p ?o ?g. }
- W4386324923 abstract "Purpose Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault Ground Motions (NFGMs), and thus forecasting the dynamic seismic response of structures, using conventional techniques, under such intense ground motions has remained a challenge. Design/methodology/approach The present study utilizes a 2D finite element model of an RC structure subjected to near-fault pulse-like ground motions with a focus on the storey drift ratio (SDR) as the key demand parameter. Five machine learning classifiers (MLCs), namely decision tree, k-nearest neighbor, random forest, support vector machine and Naïve Bayes classifier , were evaluated to classify the damage states of the RC structure. Findings The results such as confusion matrix, accuracy and mean square error indicate that the Naïve Bayes classifier model outperforms other MLCs with 80.0% accuracy. Furthermore, three MLC models with accuracy greater than 75% were trained using a voting classifier to enhance the performance score of the models. Finally, a sensitivity analysis was performed to evaluate the model's resilience and dependability. Originality/value The objective of the current study is to predict the nonlinear storey drift demand for low-rise RC structures using machine learning techniques, instead of labor-intensive nonlinear dynamic analysis." @default.
- W4386324923 created "2023-09-01" @default.
- W4386324923 creator A5001182766 @default.
- W4386324923 creator A5065260080 @default.
- W4386324923 creator A5085722318 @default.
- W4386324923 date "2023-08-31" @default.
- W4386324923 modified "2023-10-14" @default.
- W4386324923 title "Prediction of storey drift for reinforced concrete structures subjected to pulse-like ground motions using machine learning classification models" @default.
- W4386324923 cites W1892227193 @default.
- W4386324923 cites W1930624869 @default.
- W4386324923 cites W1971514825 @default.
- W4386324923 cites W1974799041 @default.
- W4386324923 cites W1979249723 @default.
- W4386324923 cites W1984047604 @default.
- W4386324923 cites W1985587747 @default.
- W4386324923 cites W1992649778 @default.
- W4386324923 cites W1994830145 @default.
- W4386324923 cites W2007075601 @default.
- W4386324923 cites W2009702729 @default.
- W4386324923 cites W2022791835 @default.
- W4386324923 cites W2023613048 @default.
- W4386324923 cites W2030445304 @default.
- W4386324923 cites W2034116249 @default.
- W4386324923 cites W2037550469 @default.
- W4386324923 cites W2047409389 @default.
- W4386324923 cites W2059158184 @default.
- W4386324923 cites W2060679619 @default.
- W4386324923 cites W2062194980 @default.
- W4386324923 cites W2064479922 @default.
- W4386324923 cites W2064631482 @default.
- W4386324923 cites W2069329199 @default.
- W4386324923 cites W2076637190 @default.
- W4386324923 cites W2093825590 @default.
- W4386324923 cites W2099021778 @default.
- W4386324923 cites W2116825089 @default.
- W4386324923 cites W2119475352 @default.
- W4386324923 cites W2134549367 @default.
- W4386324923 cites W2141234150 @default.
- W4386324923 cites W2144684828 @default.
- W4386324923 cites W2149344571 @default.
- W4386324923 cites W2152093129 @default.
- W4386324923 cites W2153233077 @default.
- W4386324923 cites W2156320181 @default.
- W4386324923 cites W2158141502 @default.
- W4386324923 cites W2326670233 @default.
- W4386324923 cites W2463798806 @default.
- W4386324923 cites W2473883867 @default.
- W4386324923 cites W2554429552 @default.
- W4386324923 cites W2744787541 @default.
- W4386324923 cites W2922187519 @default.
- W4386324923 cites W2964324094 @default.
- W4386324923 cites W2974551902 @default.
- W4386324923 cites W2979543333 @default.
- W4386324923 cites W3033652307 @default.
- W4386324923 cites W3045004532 @default.
- W4386324923 cites W3048541149 @default.
- W4386324923 cites W3080586597 @default.
- W4386324923 cites W3089246515 @default.
- W4386324923 cites W3104623446 @default.
- W4386324923 cites W3152588477 @default.
- W4386324923 cites W3165186812 @default.
- W4386324923 cites W3168222379 @default.
- W4386324923 cites W3208382054 @default.
- W4386324923 cites W3209199687 @default.
- W4386324923 cites W4281781171 @default.
- W4386324923 cites W4328092154 @default.
- W4386324923 cites W4376619880 @default.
- W4386324923 cites W4378575252 @default.
- W4386324923 cites W4384376913 @default.
- W4386324923 cites W862271535 @default.
- W4386324923 doi "https://doi.org/10.1108/ijsi-06-2023-0054" @default.
- W4386324923 hasPublicationYear "2023" @default.
- W4386324923 type Work @default.
- W4386324923 citedByCount "0" @default.
- W4386324923 crossrefType "journal-article" @default.
- W4386324923 hasAuthorship W4386324923A5001182766 @default.
- W4386324923 hasAuthorship W4386324923A5065260080 @default.
- W4386324923 hasAuthorship W4386324923A5085722318 @default.
- W4386324923 hasConcept C11413529 @default.
- W4386324923 hasConcept C119857082 @default.
- W4386324923 hasConcept C121332964 @default.
- W4386324923 hasConcept C12267149 @default.
- W4386324923 hasConcept C127413603 @default.
- W4386324923 hasConcept C138602881 @default.
- W4386324923 hasConcept C153180895 @default.
- W4386324923 hasConcept C154945302 @default.
- W4386324923 hasConcept C158622935 @default.
- W4386324923 hasConcept C169258074 @default.
- W4386324923 hasConcept C41008148 @default.
- W4386324923 hasConcept C52001869 @default.
- W4386324923 hasConcept C62520636 @default.
- W4386324923 hasConcept C66938386 @default.
- W4386324923 hasConcept C84525736 @default.
- W4386324923 hasConcept C95623464 @default.
- W4386324923 hasConceptScore W4386324923C11413529 @default.
- W4386324923 hasConceptScore W4386324923C119857082 @default.
- W4386324923 hasConceptScore W4386324923C121332964 @default.
- W4386324923 hasConceptScore W4386324923C12267149 @default.
- W4386324923 hasConceptScore W4386324923C127413603 @default.
- W4386324923 hasConceptScore W4386324923C138602881 @default.