Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386326478> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4386326478 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Monitoring the snowpack remains challenging in part due to the limited availability of observations. On the one hand, the deployment of dense ground-based monitoring networks is hampered by logistical hurdles. On the other hand, satellite-based remote sensing products provide only partial information about the snowpack, often limited to snow-covered area or surface temperature. Numerical models are a valuable tool to help fill the gaps in snowpack monitoring. Model performance is nonetheless contingent upon the quality of meteorological forcing, which is often highly uncertain especially in complex terrain. To address these limitations, data assimilation techniques that integrate available observations with snow models have been proposed as a viable option to simultaneously help constrain model uncertainty and add value to observations by improving estimates of the snowpack state. However, the propagation of information from spatially sparse observations in high resolution simulations remains an under-explored topic. To remedy this, the development of data assimilation techniques that can spread information in space is a crucial step. Herein, we examine the potential of spatio-temporal data assimilation for integrating sparse snow depth observations with hyper-resolution (5 m) snow simulations in the Izas central Pyrenean experimental catchment (Spain). Our experiments were developed using the Multiple Snow Data Assimilation System (MuSA) with new improvements to tackle the spatio-temporal data assimilation. Therein, we used a Deterministic Ensemble Smoother with Multiple Data Assimilation (DES-MDA) with domain localization. Three different experiments were performed to showcase capabilities of spatio-temporal information transfer in hyper-resolution snow simulations. Experiment I employed the conventional geographical Euclidean distance to map the similarity between cells. Experiment II utilized the Mahalanobis distance in a multi-dimensional topographic space using terrain parameters extracted from a digital elevation model. Experiment III utilized a more direct mapping of snowpack similarity from a single complete snow depth map together with the easting and northing coordinates. Although all experiments showed a noticeable improvement in the snow patterns in the catchment compared with the deterministic open loop in terms of correlation (<em>r </em>= 0.13) and root-mean-square error (RMSE = 1.11 m), the use of topographical dimensions (Experiment II, <em>r</em> = 0.63 and RMSE = 0.89 m) and observations (Experiments III, <em>r</em> = 0.92 and RMSE = 0.44 m) largely outperform the simulated patterns in Experiment I (<em>r</em> = 0.38 and RMSE = 1.16 m). At the same time, Experiments II & III are considerably more challenging to set up. The results of these experiments can help pave the way for the creation of snow reanalysis and forecasting tools that can seamlessly integrate sparse information from national monitoring networks and high-resolution satellite information." @default.
- W4386326478 created "2023-09-01" @default.
- W4386326478 date "2023-08-31" @default.
- W4386326478 modified "2023-10-01" @default.
- W4386326478 title "Comment on egusphere-2023-954" @default.
- W4386326478 doi "https://doi.org/10.5194/egusphere-2023-954-rc1" @default.
- W4386326478 hasPublicationYear "2023" @default.
- W4386326478 type Work @default.
- W4386326478 citedByCount "0" @default.
- W4386326478 crossrefType "peer-review" @default.
- W4386326478 hasBestOaLocation W43863264781 @default.
- W4386326478 hasConcept C119666444 @default.
- W4386326478 hasConcept C121332964 @default.
- W4386326478 hasConcept C153294291 @default.
- W4386326478 hasConcept C161840515 @default.
- W4386326478 hasConcept C197046000 @default.
- W4386326478 hasConcept C205649164 @default.
- W4386326478 hasConcept C24552861 @default.
- W4386326478 hasConcept C2778877292 @default.
- W4386326478 hasConcept C39432304 @default.
- W4386326478 hasConcept C41008148 @default.
- W4386326478 hasConcept C58640448 @default.
- W4386326478 hasConcept C62520636 @default.
- W4386326478 hasConcept C62649853 @default.
- W4386326478 hasConceptScore W4386326478C119666444 @default.
- W4386326478 hasConceptScore W4386326478C121332964 @default.
- W4386326478 hasConceptScore W4386326478C153294291 @default.
- W4386326478 hasConceptScore W4386326478C161840515 @default.
- W4386326478 hasConceptScore W4386326478C197046000 @default.
- W4386326478 hasConceptScore W4386326478C205649164 @default.
- W4386326478 hasConceptScore W4386326478C24552861 @default.
- W4386326478 hasConceptScore W4386326478C2778877292 @default.
- W4386326478 hasConceptScore W4386326478C39432304 @default.
- W4386326478 hasConceptScore W4386326478C41008148 @default.
- W4386326478 hasConceptScore W4386326478C58640448 @default.
- W4386326478 hasConceptScore W4386326478C62520636 @default.
- W4386326478 hasConceptScore W4386326478C62649853 @default.
- W4386326478 hasLocation W43863264781 @default.
- W4386326478 hasOpenAccess W4386326478 @default.
- W4386326478 hasPrimaryLocation W43863264781 @default.
- W4386326478 hasRelatedWork W1480241165 @default.
- W4386326478 hasRelatedWork W2006688535 @default.
- W4386326478 hasRelatedWork W2118444328 @default.
- W4386326478 hasRelatedWork W2131373907 @default.
- W4386326478 hasRelatedWork W2972166809 @default.
- W4386326478 hasRelatedWork W3046765276 @default.
- W4386326478 hasRelatedWork W3094112595 @default.
- W4386326478 hasRelatedWork W4249891865 @default.
- W4386326478 hasRelatedWork W4317727046 @default.
- W4386326478 hasRelatedWork W4385660293 @default.
- W4386326478 isParatext "false" @default.
- W4386326478 isRetracted "false" @default.
- W4386326478 workType "peer-review" @default.