Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386328855> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4386328855 endingPage "867" @default.
- W4386328855 startingPage "857" @default.
- W4386328855 abstract "Brain tumour segmentation is a challenging task to perform from the brain MRI image. This is because the different parts of the brain have complex structures. The main objective of image segmentation is to segment the image into parts so that it’s easier to identify the tumour using the classification algorithm. In this paper, a simple linear iterative clustering (SLIC) segmentation algorithm is presented for the segmentation of brain MRI images. This algorithm categorizes the image into different superpixels, which are formed based on the pixel positions and spatial intensity value. However, the superpixels are combined with the neighbouring superpixels and form large regions for merging similar regions. In fast superpixel fusion, the pixel values in each superpixel are replaced by the average pixel value. Find the unique pixel values in the superpixels and cluster them based on the average pixel value. This results in superpixels being grouped into the background with average pixel value zero, grey matter with average pixel values less than two hundred and more than zero, and tumour and skull with average pixel values higher than two hundred. This operation fuses the superpixels at a faster rate and produces the fused superpixels for tumour classification." @default.
- W4386328855 created "2023-09-01" @default.
- W4386328855 creator A5028526063 @default.
- W4386328855 creator A5042958296 @default.
- W4386328855 date "2023-01-01" @default.
- W4386328855 modified "2023-09-27" @default.
- W4386328855 title "An Improved Brain Tumour Detection and Classification Using SLIC Superpixel Fusion, Deep Learning and Linear Neighbourhood Semantic Segmentation" @default.
- W4386328855 cites W2094164926 @default.
- W4386328855 cites W2735429996 @default.
- W4386328855 cites W2773823786 @default.
- W4386328855 cites W2783020986 @default.
- W4386328855 cites W2789249109 @default.
- W4386328855 cites W2798196978 @default.
- W4386328855 cites W2885736666 @default.
- W4386328855 cites W2904404587 @default.
- W4386328855 cites W2910854613 @default.
- W4386328855 cites W2921384086 @default.
- W4386328855 cites W2946616172 @default.
- W4386328855 cites W2952378269 @default.
- W4386328855 cites W2954020051 @default.
- W4386328855 cites W2979699329 @default.
- W4386328855 cites W3017037418 @default.
- W4386328855 cites W3164956625 @default.
- W4386328855 doi "https://doi.org/10.1007/978-981-99-3485-0_67" @default.
- W4386328855 hasPublicationYear "2023" @default.
- W4386328855 type Work @default.
- W4386328855 citedByCount "0" @default.
- W4386328855 crossrefType "book-chapter" @default.
- W4386328855 hasAuthorship W4386328855A5028526063 @default.
- W4386328855 hasAuthorship W4386328855A5042958296 @default.
- W4386328855 hasConcept C124504099 @default.
- W4386328855 hasConcept C138885662 @default.
- W4386328855 hasConcept C153180895 @default.
- W4386328855 hasConcept C154945302 @default.
- W4386328855 hasConcept C158525013 @default.
- W4386328855 hasConcept C160633673 @default.
- W4386328855 hasConcept C31972630 @default.
- W4386328855 hasConcept C41008148 @default.
- W4386328855 hasConcept C41895202 @default.
- W4386328855 hasConcept C73555534 @default.
- W4386328855 hasConcept C89600930 @default.
- W4386328855 hasConceptScore W4386328855C124504099 @default.
- W4386328855 hasConceptScore W4386328855C138885662 @default.
- W4386328855 hasConceptScore W4386328855C153180895 @default.
- W4386328855 hasConceptScore W4386328855C154945302 @default.
- W4386328855 hasConceptScore W4386328855C158525013 @default.
- W4386328855 hasConceptScore W4386328855C160633673 @default.
- W4386328855 hasConceptScore W4386328855C31972630 @default.
- W4386328855 hasConceptScore W4386328855C41008148 @default.
- W4386328855 hasConceptScore W4386328855C41895202 @default.
- W4386328855 hasConceptScore W4386328855C73555534 @default.
- W4386328855 hasConceptScore W4386328855C89600930 @default.
- W4386328855 hasLocation W43863288551 @default.
- W4386328855 hasOpenAccess W4386328855 @default.
- W4386328855 hasPrimaryLocation W43863288551 @default.
- W4386328855 hasRelatedWork W121273120 @default.
- W4386328855 hasRelatedWork W1669643531 @default.
- W4386328855 hasRelatedWork W2005437358 @default.
- W4386328855 hasRelatedWork W2008656436 @default.
- W4386328855 hasRelatedWork W2023558673 @default.
- W4386328855 hasRelatedWork W2134924024 @default.
- W4386328855 hasRelatedWork W2337415362 @default.
- W4386328855 hasRelatedWork W2517104666 @default.
- W4386328855 hasRelatedWork W2740820121 @default.
- W4386328855 hasRelatedWork W4312857205 @default.
- W4386328855 isParatext "false" @default.
- W4386328855 isRetracted "false" @default.
- W4386328855 workType "book-chapter" @default.