Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386329823> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4386329823 abstract "Abstract Diseases are increasing with exponential rate worldwide. Its detection is challenging task due to unavailability of the experts. Machine learning models provide automated mechanism to detect diseases once trained. It has been used to predict and detect many diseases such as cancer, heart attack, liver infections, kidney infections. The new coronavirus has become one of the deadliest diseases. Its case escalated in unexpected ways. In the literature, many machine learning models such as Extreme Gradient Boosting (XGBoosting), Support Vector Machine (SVM), regression, and Logistic regression have been used. It has been observed that these models can predict COVID cases early but are unable to find the peak point and deadline of the disease. Hence, mathematical models have been designed to early predict and find peak point and dead-line in disease prediction. These mathematical models use integral calculus-based Ordinary Differential Equations (ODEs) to predict COVID cases. Governments are dependent on these models’ pre- diction for early preparation of hospitalization, medicines, and many more. Hence, higher prediction accuracy is required. It has been found in the literature that fractional calculus-based models are more accurate in disease prediction and detection. Fractional models provides to choose order of derivative with fractional value due to which information processing capability increases. In the present work, mathematical model using fractional calculus has been devised for prediction of COVID cases. In the model, quarantine, symptomatic and asymptomatic cases have been incorporated for accurate prediction. It is found that the proposed fractional model not only predicts COVID cases more accurately but also gives peak point and dead-line of the disease." @default.
- W4386329823 created "2023-09-01" @default.
- W4386329823 creator A5015821256 @default.
- W4386329823 creator A5077957509 @default.
- W4386329823 date "2023-08-31" @default.
- W4386329823 modified "2023-10-11" @default.
- W4386329823 title "Efficient Machine Learning and Factional Calculus Based Mathematical Model for Early COVID Prediction" @default.
- W4386329823 cites W1978349032 @default.
- W4386329823 cites W2080928512 @default.
- W4386329823 cites W2591254227 @default.
- W4386329823 cites W2916281848 @default.
- W4386329823 cites W2919863249 @default.
- W4386329823 cites W2999318660 @default.
- W4386329823 cites W2999862638 @default.
- W4386329823 cites W3008294222 @default.
- W4386329823 cites W3010286214 @default.
- W4386329823 cites W3011059565 @default.
- W4386329823 cites W3015433395 @default.
- W4386329823 cites W3025504737 @default.
- W4386329823 cites W3090115387 @default.
- W4386329823 cites W3098474649 @default.
- W4386329823 cites W3104139592 @default.
- W4386329823 cites W3105344268 @default.
- W4386329823 cites W3113005448 @default.
- W4386329823 cites W3121067595 @default.
- W4386329823 cites W3126215364 @default.
- W4386329823 cites W3155922508 @default.
- W4386329823 cites W3160792020 @default.
- W4386329823 cites W3169698375 @default.
- W4386329823 cites W3169838607 @default.
- W4386329823 cites W3173809984 @default.
- W4386329823 cites W3177047919 @default.
- W4386329823 cites W3204287795 @default.
- W4386329823 cites W3204874854 @default.
- W4386329823 cites W3207956109 @default.
- W4386329823 cites W3216737359 @default.
- W4386329823 cites W4210546526 @default.
- W4386329823 cites W4281616267 @default.
- W4386329823 cites W4296125757 @default.
- W4386329823 cites W4366983521 @default.
- W4386329823 doi "https://doi.org/10.1007/s44230-023-00042-2" @default.
- W4386329823 hasPublicationYear "2023" @default.
- W4386329823 type Work @default.
- W4386329823 citedByCount "0" @default.
- W4386329823 crossrefType "journal-article" @default.
- W4386329823 hasAuthorship W4386329823A5015821256 @default.
- W4386329823 hasAuthorship W4386329823A5077957509 @default.
- W4386329823 hasBestOaLocation W43863298231 @default.
- W4386329823 hasConcept C119857082 @default.
- W4386329823 hasConcept C12267149 @default.
- W4386329823 hasConcept C151956035 @default.
- W4386329823 hasConcept C154249771 @default.
- W4386329823 hasConcept C154945302 @default.
- W4386329823 hasConcept C199343813 @default.
- W4386329823 hasConcept C2777686260 @default.
- W4386329823 hasConcept C28826006 @default.
- W4386329823 hasConcept C33923547 @default.
- W4386329823 hasConcept C41008148 @default.
- W4386329823 hasConcept C45804977 @default.
- W4386329823 hasConcept C71924100 @default.
- W4386329823 hasConceptScore W4386329823C119857082 @default.
- W4386329823 hasConceptScore W4386329823C12267149 @default.
- W4386329823 hasConceptScore W4386329823C151956035 @default.
- W4386329823 hasConceptScore W4386329823C154249771 @default.
- W4386329823 hasConceptScore W4386329823C154945302 @default.
- W4386329823 hasConceptScore W4386329823C199343813 @default.
- W4386329823 hasConceptScore W4386329823C2777686260 @default.
- W4386329823 hasConceptScore W4386329823C28826006 @default.
- W4386329823 hasConceptScore W4386329823C33923547 @default.
- W4386329823 hasConceptScore W4386329823C41008148 @default.
- W4386329823 hasConceptScore W4386329823C45804977 @default.
- W4386329823 hasConceptScore W4386329823C71924100 @default.
- W4386329823 hasLocation W43863298231 @default.
- W4386329823 hasOpenAccess W4386329823 @default.
- W4386329823 hasPrimaryLocation W43863298231 @default.
- W4386329823 hasRelatedWork W1996541855 @default.
- W4386329823 hasRelatedWork W2554948173 @default.
- W4386329823 hasRelatedWork W3160244858 @default.
- W4386329823 hasRelatedWork W3195168932 @default.
- W4386329823 hasRelatedWork W3208954537 @default.
- W4386329823 hasRelatedWork W4316658362 @default.
- W4386329823 hasRelatedWork W4321636153 @default.
- W4386329823 hasRelatedWork W4379875305 @default.
- W4386329823 hasRelatedWork W4383535405 @default.
- W4386329823 hasRelatedWork W4384828018 @default.
- W4386329823 isParatext "false" @default.
- W4386329823 isRetracted "false" @default.
- W4386329823 workType "article" @default.