Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386330250> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4386330250 endingPage "988" @default.
- W4386330250 startingPage "975" @default.
- W4386330250 abstract "Academic achievement (AP) in recent years has shown minimal progress with a difference of 0.05%, according to the report made by the Program for International Student Assessment (PISA). For this reason, the objective of this research is to build a predictive multiclass classification model for the AP of students in an elementary school. It was conducted with a dataset of 218 third-year high school students. The Cross Industry Standard Process for Data Mining (CRISP-DM) methodology was used to create the model, which consists of 6 phases and is effective in data mining (DM) projects. The random forest (RF) algorithm was also used. The results indicated that the RF model obtained the highest prediction rates compared to other studies, with an accuracy of 95% of the model, respectively. Finally, it is observed that the attributes that mostly influence prediction are the scores of Ability 02 end of I bimester, Positive Impression, Ability 01 end of I bimester, Ability 03 end of I bimester, and Adaptability. Thus, it is concluded that academic attributes are more relevant than psychological attributes in predicting RF." @default.
- W4386330250 created "2023-09-01" @default.
- W4386330250 creator A5057766829 @default.
- W4386330250 creator A5078759618 @default.
- W4386330250 creator A5092725157 @default.
- W4386330250 creator A5092725158 @default.
- W4386330250 creator A5092725159 @default.
- W4386330250 date "2023-09-01" @default.
- W4386330250 modified "2023-09-30" @default.
- W4386330250 title "Predictive Model with Machine Learning for Academic Performance" @default.
- W4386330250 cites W2330219538 @default.
- W4386330250 cites W2548617734 @default.
- W4386330250 cites W2883198277 @default.
- W4386330250 cites W2888192760 @default.
- W4386330250 cites W2893802547 @default.
- W4386330250 cites W2944191664 @default.
- W4386330250 cites W2953542916 @default.
- W4386330250 cites W2953710871 @default.
- W4386330250 cites W2975672867 @default.
- W4386330250 cites W2983768164 @default.
- W4386330250 cites W3015351929 @default.
- W4386330250 cites W3094241317 @default.
- W4386330250 cites W3138703676 @default.
- W4386330250 cites W3139439605 @default.
- W4386330250 cites W3154525947 @default.
- W4386330250 cites W3198634930 @default.
- W4386330250 cites W3199473864 @default.
- W4386330250 cites W3206024511 @default.
- W4386330250 cites W4214551060 @default.
- W4386330250 doi "https://doi.org/10.1007/978-981-99-3043-2_81" @default.
- W4386330250 hasPublicationYear "2023" @default.
- W4386330250 type Work @default.
- W4386330250 citedByCount "0" @default.
- W4386330250 crossrefType "book-chapter" @default.
- W4386330250 hasAuthorship W4386330250A5057766829 @default.
- W4386330250 hasAuthorship W4386330250A5078759618 @default.
- W4386330250 hasAuthorship W4386330250A5092725157 @default.
- W4386330250 hasAuthorship W4386330250A5092725158 @default.
- W4386330250 hasAuthorship W4386330250A5092725159 @default.
- W4386330250 hasConcept C111919701 @default.
- W4386330250 hasConcept C119857082 @default.
- W4386330250 hasConcept C124101348 @default.
- W4386330250 hasConcept C145420912 @default.
- W4386330250 hasConcept C154945302 @default.
- W4386330250 hasConcept C15744967 @default.
- W4386330250 hasConcept C162324750 @default.
- W4386330250 hasConcept C169258074 @default.
- W4386330250 hasConcept C177606310 @default.
- W4386330250 hasConcept C187736073 @default.
- W4386330250 hasConcept C41008148 @default.
- W4386330250 hasConcept C98045186 @default.
- W4386330250 hasConceptScore W4386330250C111919701 @default.
- W4386330250 hasConceptScore W4386330250C119857082 @default.
- W4386330250 hasConceptScore W4386330250C124101348 @default.
- W4386330250 hasConceptScore W4386330250C145420912 @default.
- W4386330250 hasConceptScore W4386330250C154945302 @default.
- W4386330250 hasConceptScore W4386330250C15744967 @default.
- W4386330250 hasConceptScore W4386330250C162324750 @default.
- W4386330250 hasConceptScore W4386330250C169258074 @default.
- W4386330250 hasConceptScore W4386330250C177606310 @default.
- W4386330250 hasConceptScore W4386330250C187736073 @default.
- W4386330250 hasConceptScore W4386330250C41008148 @default.
- W4386330250 hasConceptScore W4386330250C98045186 @default.
- W4386330250 hasLocation W43863302501 @default.
- W4386330250 hasOpenAccess W4386330250 @default.
- W4386330250 hasPrimaryLocation W43863302501 @default.
- W4386330250 hasRelatedWork W2911455822 @default.
- W4386330250 hasRelatedWork W3018959556 @default.
- W4386330250 hasRelatedWork W3174196512 @default.
- W4386330250 hasRelatedWork W3211546796 @default.
- W4386330250 hasRelatedWork W4281560664 @default.
- W4386330250 hasRelatedWork W4281616679 @default.
- W4386330250 hasRelatedWork W4293525103 @default.
- W4386330250 hasRelatedWork W4308191010 @default.
- W4386330250 hasRelatedWork W4318350883 @default.
- W4386330250 hasRelatedWork W4323021782 @default.
- W4386330250 isParatext "false" @default.
- W4386330250 isRetracted "false" @default.
- W4386330250 workType "book-chapter" @default.