Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386330355> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4386330355 endingPage "513" @default.
- W4386330355 startingPage "503" @default.
- W4386330355 abstract "This work explored six machine learning algorithms: Extreme Gradient Boosting (XGBoost), Logistic Regression, Random Forest, Decision tree, Support Vector Machine (SVM), and Naïve Bayes to determine the best algorithm for detecting insurance fraud. The following were used to evaluate the six models: Confusion matrix, Accuracy, Precision, Recall, and F1-measure. The result showed that Random Forest outperformed the others in terms of accuracy. Extreme Gradient Boosting (Xgboost) had the highest precision and F1-measure scores, while the Decision Tree had the highest Recall score. Although two methods (Analysis of Variance (ANOVA) and Random Forest Classifier) were compared to determine the best feature selection, the significant features were selected using the Random Forest classifier because of the many benefits of using this method. The results of this study will be beneficial to insurance companies, stakeholders and policyholders." @default.
- W4386330355 created "2023-09-01" @default.
- W4386330355 creator A5022205328 @default.
- W4386330355 creator A5038097688 @default.
- W4386330355 creator A5060045903 @default.
- W4386330355 date "2023-09-01" @default.
- W4386330355 modified "2023-09-27" @default.
- W4386330355 title "Auto-Insurance Fraud Detection Using Machine Learning Classification Models" @default.
- W4386330355 cites W2001477198 @default.
- W4386330355 cites W2084256412 @default.
- W4386330355 cites W2085766370 @default.
- W4386330355 cites W2115329873 @default.
- W4386330355 cites W2333568743 @default.
- W4386330355 cites W2466279936 @default.
- W4386330355 cites W2561283532 @default.
- W4386330355 cites W2571178338 @default.
- W4386330355 cites W2758670816 @default.
- W4386330355 cites W2769984510 @default.
- W4386330355 cites W2944842185 @default.
- W4386330355 cites W3095164600 @default.
- W4386330355 cites W3175168077 @default.
- W4386330355 cites W3183560208 @default.
- W4386330355 cites W3195459095 @default.
- W4386330355 cites W3211421449 @default.
- W4386330355 cites W4223932288 @default.
- W4386330355 cites W4292133399 @default.
- W4386330355 cites W614715210 @default.
- W4386330355 doi "https://doi.org/10.1007/978-981-99-3043-2_39" @default.
- W4386330355 hasPublicationYear "2023" @default.
- W4386330355 type Work @default.
- W4386330355 citedByCount "0" @default.
- W4386330355 crossrefType "book-chapter" @default.
- W4386330355 hasAuthorship W4386330355A5022205328 @default.
- W4386330355 hasAuthorship W4386330355A5038097688 @default.
- W4386330355 hasAuthorship W4386330355A5060045903 @default.
- W4386330355 hasConcept C100660578 @default.
- W4386330355 hasConcept C105795698 @default.
- W4386330355 hasConcept C119857082 @default.
- W4386330355 hasConcept C12267149 @default.
- W4386330355 hasConcept C124101348 @default.
- W4386330355 hasConcept C138602881 @default.
- W4386330355 hasConcept C148483581 @default.
- W4386330355 hasConcept C151956035 @default.
- W4386330355 hasConcept C154945302 @default.
- W4386330355 hasConcept C15744967 @default.
- W4386330355 hasConcept C169258074 @default.
- W4386330355 hasConcept C180747234 @default.
- W4386330355 hasConcept C33923547 @default.
- W4386330355 hasConcept C41008148 @default.
- W4386330355 hasConcept C46686674 @default.
- W4386330355 hasConcept C52001869 @default.
- W4386330355 hasConcept C70153297 @default.
- W4386330355 hasConcept C81669768 @default.
- W4386330355 hasConcept C84525736 @default.
- W4386330355 hasConcept C95623464 @default.
- W4386330355 hasConceptScore W4386330355C100660578 @default.
- W4386330355 hasConceptScore W4386330355C105795698 @default.
- W4386330355 hasConceptScore W4386330355C119857082 @default.
- W4386330355 hasConceptScore W4386330355C12267149 @default.
- W4386330355 hasConceptScore W4386330355C124101348 @default.
- W4386330355 hasConceptScore W4386330355C138602881 @default.
- W4386330355 hasConceptScore W4386330355C148483581 @default.
- W4386330355 hasConceptScore W4386330355C151956035 @default.
- W4386330355 hasConceptScore W4386330355C154945302 @default.
- W4386330355 hasConceptScore W4386330355C15744967 @default.
- W4386330355 hasConceptScore W4386330355C169258074 @default.
- W4386330355 hasConceptScore W4386330355C180747234 @default.
- W4386330355 hasConceptScore W4386330355C33923547 @default.
- W4386330355 hasConceptScore W4386330355C41008148 @default.
- W4386330355 hasConceptScore W4386330355C46686674 @default.
- W4386330355 hasConceptScore W4386330355C52001869 @default.
- W4386330355 hasConceptScore W4386330355C70153297 @default.
- W4386330355 hasConceptScore W4386330355C81669768 @default.
- W4386330355 hasConceptScore W4386330355C84525736 @default.
- W4386330355 hasConceptScore W4386330355C95623464 @default.
- W4386330355 hasLocation W43863303551 @default.
- W4386330355 hasOpenAccess W4386330355 @default.
- W4386330355 hasPrimaryLocation W43863303551 @default.
- W4386330355 hasRelatedWork W3204641204 @default.
- W4386330355 hasRelatedWork W3210696866 @default.
- W4386330355 hasRelatedWork W4214951795 @default.
- W4386330355 hasRelatedWork W4293069612 @default.
- W4386330355 hasRelatedWork W4312983793 @default.
- W4386330355 hasRelatedWork W4313165475 @default.
- W4386330355 hasRelatedWork W4321636153 @default.
- W4386330355 hasRelatedWork W4383535405 @default.
- W4386330355 hasRelatedWork W4384345534 @default.
- W4386330355 hasRelatedWork W4385728794 @default.
- W4386330355 isParatext "false" @default.
- W4386330355 isRetracted "false" @default.
- W4386330355 workType "book-chapter" @default.