Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386330385> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4386330385 endingPage "602" @default.
- W4386330385 startingPage "591" @default.
- W4386330385 abstract "Maize is the major source of income in Africa, especially in Rwanda. However, there are many diseases which affect its growth as well as lowering its production. Using technologies like Artificial Intelligence (AI), the Internet of Things avoids the manual tasks which may come up with errors and help farmers to get automation of farms and the control of farm resources such as soil parameters, pests, and insects. This work highlights the IoT systems and Machine Learning Techniques applications in precision agriculture. The proposed solution uses NPK sensors to sense the soil quality/chemical properties, temperature, moisture, humidity, and EfficientNet deep learning model was used to predict maize plant healthiness. The output results shows that the model provides the best performance and can achieved 95% accuracy, and it can be seen that our model has reduced the loss from 79% to the 17%." @default.
- W4386330385 created "2023-09-01" @default.
- W4386330385 creator A5011653652 @default.
- W4386330385 creator A5054683248 @default.
- W4386330385 creator A5092725202 @default.
- W4386330385 creator A5092725203 @default.
- W4386330385 date "2023-09-01" @default.
- W4386330385 modified "2023-10-14" @default.
- W4386330385 title "Maize Plant Conditions Prediction Using IoT Systems and Machine Learning Techniques for Precision Agriculture" @default.
- W4386330385 cites W2512180645 @default.
- W4386330385 cites W2915755045 @default.
- W4386330385 cites W2943594495 @default.
- W4386330385 cites W2969887765 @default.
- W4386330385 cites W3011924739 @default.
- W4386330385 cites W3034173830 @default.
- W4386330385 cites W3088208717 @default.
- W4386330385 cites W3095722810 @default.
- W4386330385 cites W3114453490 @default.
- W4386330385 cites W3122351145 @default.
- W4386330385 cites W3167798738 @default.
- W4386330385 cites W3216762698 @default.
- W4386330385 cites W4206008156 @default.
- W4386330385 cites W4206227284 @default.
- W4386330385 cites W4223891748 @default.
- W4386330385 cites W4244401504 @default.
- W4386330385 cites W4282977922 @default.
- W4386330385 doi "https://doi.org/10.1007/978-981-99-3043-2_47" @default.
- W4386330385 hasPublicationYear "2023" @default.
- W4386330385 type Work @default.
- W4386330385 citedByCount "0" @default.
- W4386330385 crossrefType "book-chapter" @default.
- W4386330385 hasAuthorship W4386330385A5011653652 @default.
- W4386330385 hasAuthorship W4386330385A5054683248 @default.
- W4386330385 hasAuthorship W4386330385A5092725202 @default.
- W4386330385 hasAuthorship W4386330385A5092725203 @default.
- W4386330385 hasConcept C111472728 @default.
- W4386330385 hasConcept C115901376 @default.
- W4386330385 hasConcept C118518473 @default.
- W4386330385 hasConcept C119857082 @default.
- W4386330385 hasConcept C120217122 @default.
- W4386330385 hasConcept C127413603 @default.
- W4386330385 hasConcept C138885662 @default.
- W4386330385 hasConcept C139719470 @default.
- W4386330385 hasConcept C149635348 @default.
- W4386330385 hasConcept C154945302 @default.
- W4386330385 hasConcept C162324750 @default.
- W4386330385 hasConcept C166957645 @default.
- W4386330385 hasConcept C18762648 @default.
- W4386330385 hasConcept C205649164 @default.
- W4386330385 hasConcept C2778348673 @default.
- W4386330385 hasConcept C2779530757 @default.
- W4386330385 hasConcept C41008148 @default.
- W4386330385 hasConcept C78519656 @default.
- W4386330385 hasConcept C81860439 @default.
- W4386330385 hasConcept C88463610 @default.
- W4386330385 hasConceptScore W4386330385C111472728 @default.
- W4386330385 hasConceptScore W4386330385C115901376 @default.
- W4386330385 hasConceptScore W4386330385C118518473 @default.
- W4386330385 hasConceptScore W4386330385C119857082 @default.
- W4386330385 hasConceptScore W4386330385C120217122 @default.
- W4386330385 hasConceptScore W4386330385C127413603 @default.
- W4386330385 hasConceptScore W4386330385C138885662 @default.
- W4386330385 hasConceptScore W4386330385C139719470 @default.
- W4386330385 hasConceptScore W4386330385C149635348 @default.
- W4386330385 hasConceptScore W4386330385C154945302 @default.
- W4386330385 hasConceptScore W4386330385C162324750 @default.
- W4386330385 hasConceptScore W4386330385C166957645 @default.
- W4386330385 hasConceptScore W4386330385C18762648 @default.
- W4386330385 hasConceptScore W4386330385C205649164 @default.
- W4386330385 hasConceptScore W4386330385C2778348673 @default.
- W4386330385 hasConceptScore W4386330385C2779530757 @default.
- W4386330385 hasConceptScore W4386330385C41008148 @default.
- W4386330385 hasConceptScore W4386330385C78519656 @default.
- W4386330385 hasConceptScore W4386330385C81860439 @default.
- W4386330385 hasConceptScore W4386330385C88463610 @default.
- W4386330385 hasLocation W43863303851 @default.
- W4386330385 hasOpenAccess W4386330385 @default.
- W4386330385 hasPrimaryLocation W43863303851 @default.
- W4386330385 hasRelatedWork W2353782740 @default.
- W4386330385 hasRelatedWork W2384726418 @default.
- W4386330385 hasRelatedWork W2897921899 @default.
- W4386330385 hasRelatedWork W3105091639 @default.
- W4386330385 hasRelatedWork W3164587278 @default.
- W4386330385 hasRelatedWork W3186918552 @default.
- W4386330385 hasRelatedWork W3214209654 @default.
- W4386330385 hasRelatedWork W4221121366 @default.
- W4386330385 hasRelatedWork W4321608687 @default.
- W4386330385 hasRelatedWork W4323019781 @default.
- W4386330385 isParatext "false" @default.
- W4386330385 isRetracted "false" @default.
- W4386330385 workType "book-chapter" @default.