Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386332550> ?p ?o ?g. }
- W4386332550 endingPage "4301" @default.
- W4386332550 startingPage "4301" @default.
- W4386332550 abstract "The emergency response is crucial in preventing and mitigating urban floods. Both remote sensing and social media data offer distinct advantages in large-scale flood monitoring and near-real-time flood monitoring. However, current research lacks a thorough exploration of the application of social media data and remote sensing imagery in the urban flood emergency response. To address this issue, this paper, while extracting disaster information based on social media data, deeply mines the spatiotemporal distribution characteristics and dynamic spatial accessibility of rescue points. Furthermore, SAR imagery and social media data for monitoring urban flooding are compared. This study took the Zhengzhou 7.20 urban flood as a case study and created a methodological framework to quickly extract flood disaster information (flood, landslide, and rescue points) using these two types of data; spatiotemporal analysis and random forest classification were also conducted to mine valuable information. Temporally, the study revealed that disaster information did not increase proportionally with the amount of rainfall during the rainfall process. Spatially, specific regions with higher susceptibility to flooding, landslides, and rescue points were identified, such as the central region characterized by low drainage standards and high-density urban areas, as well as the eastern region with low-lying terrain. Moreover, this study examined the spatial accessibility of rescue resources in real flood scenarios and found that their service coverage varied throughout the day during and after the disaster. In addition, social media excelled in high-density urban areas’ flood point extraction, while SAR performed better in monitoring floods at the edges of low-density urban areas and large water bodies, allowing them to complement each other, to a certain extent. The findings of this study provide scientific reference value for the optimal selection of rescue paths and the allocation of resources in the emergency response to urban floods caused by extreme rainstorms." @default.
- W4386332550 created "2023-09-01" @default.
- W4386332550 creator A5007703244 @default.
- W4386332550 creator A5009600253 @default.
- W4386332550 creator A5016150064 @default.
- W4386332550 creator A5025476574 @default.
- W4386332550 creator A5037431330 @default.
- W4386332550 creator A5048833020 @default.
- W4386332550 creator A5091966907 @default.
- W4386332550 date "2023-08-31" @default.
- W4386332550 modified "2023-09-30" @default.
- W4386332550 title "Spatiotemporal Information Mining for Emergency Response of Urban Flood Based on Social Media and Remote Sensing Data" @default.
- W4386332550 cites W1066523502 @default.
- W4386332550 cites W1602658565 @default.
- W4386332550 cites W2080549699 @default.
- W4386332550 cites W2234882894 @default.
- W4386332550 cites W2238169501 @default.
- W4386332550 cites W2499133386 @default.
- W4386332550 cites W2580774552 @default.
- W4386332550 cites W2586673608 @default.
- W4386332550 cites W2638096779 @default.
- W4386332550 cites W2745024523 @default.
- W4386332550 cites W2758859316 @default.
- W4386332550 cites W2766460690 @default.
- W4386332550 cites W2792865798 @default.
- W4386332550 cites W2803972022 @default.
- W4386332550 cites W2889621879 @default.
- W4386332550 cites W2902598573 @default.
- W4386332550 cites W2910754860 @default.
- W4386332550 cites W2913079314 @default.
- W4386332550 cites W2947068671 @default.
- W4386332550 cites W295718908 @default.
- W4386332550 cites W2972064142 @default.
- W4386332550 cites W2976185610 @default.
- W4386332550 cites W2981123093 @default.
- W4386332550 cites W2991967052 @default.
- W4386332550 cites W2999820247 @default.
- W4386332550 cites W3026404307 @default.
- W4386332550 cites W3026809764 @default.
- W4386332550 cites W3036011097 @default.
- W4386332550 cites W3043573314 @default.
- W4386332550 cites W3048416601 @default.
- W4386332550 cites W3081958784 @default.
- W4386332550 cites W3092470468 @default.
- W4386332550 cites W3107556612 @default.
- W4386332550 cites W3108150297 @default.
- W4386332550 cites W3135423358 @default.
- W4386332550 cites W3143196052 @default.
- W4386332550 cites W3160515246 @default.
- W4386332550 cites W3169967612 @default.
- W4386332550 cites W3178792376 @default.
- W4386332550 cites W3190180270 @default.
- W4386332550 cites W3200084005 @default.
- W4386332550 cites W3214659126 @default.
- W4386332550 cites W4200575156 @default.
- W4386332550 cites W4214734961 @default.
- W4386332550 cites W4220972319 @default.
- W4386332550 cites W4224226982 @default.
- W4386332550 cites W4224883677 @default.
- W4386332550 cites W4289938273 @default.
- W4386332550 cites W4292386809 @default.
- W4386332550 cites W4295359802 @default.
- W4386332550 cites W4296350769 @default.
- W4386332550 cites W4296662092 @default.
- W4386332550 cites W4304633207 @default.
- W4386332550 cites W4307701837 @default.
- W4386332550 cites W4307991786 @default.
- W4386332550 cites W4308100537 @default.
- W4386332550 cites W4310379158 @default.
- W4386332550 cites W4320491743 @default.
- W4386332550 cites W4353071460 @default.
- W4386332550 doi "https://doi.org/10.3390/rs15174301" @default.
- W4386332550 hasPublicationYear "2023" @default.
- W4386332550 type Work @default.
- W4386332550 citedByCount "0" @default.
- W4386332550 crossrefType "journal-article" @default.
- W4386332550 hasAuthorship W4386332550A5007703244 @default.
- W4386332550 hasAuthorship W4386332550A5009600253 @default.
- W4386332550 hasAuthorship W4386332550A5016150064 @default.
- W4386332550 hasAuthorship W4386332550A5025476574 @default.
- W4386332550 hasAuthorship W4386332550A5037431330 @default.
- W4386332550 hasAuthorship W4386332550A5048833020 @default.
- W4386332550 hasAuthorship W4386332550A5091966907 @default.
- W4386332550 hasBestOaLocation W43863325501 @default.
- W4386332550 hasConcept C127313418 @default.
- W4386332550 hasConcept C136764020 @default.
- W4386332550 hasConcept C153294291 @default.
- W4386332550 hasConcept C15744967 @default.
- W4386332550 hasConcept C161840515 @default.
- W4386332550 hasConcept C166566181 @default.
- W4386332550 hasConcept C166957645 @default.
- W4386332550 hasConcept C186295008 @default.
- W4386332550 hasConcept C186594467 @default.
- W4386332550 hasConcept C187320778 @default.
- W4386332550 hasConcept C205649164 @default.
- W4386332550 hasConcept C39432304 @default.
- W4386332550 hasConcept C41008148 @default.
- W4386332550 hasConcept C518677369 @default.