Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386336947> ?p ?o ?g. }
- W4386336947 endingPage "93" @default.
- W4386336947 startingPage "81" @default.
- W4386336947 abstract "This article presents a study with feasibility and performance analysis of machine learning (ML) techniques using supervised techniques for anomaly detection problems in a 5G communication network. The proposed ML models (Multilayer Perceptron, Decision Tree, and Support Vector Machine) were used to classify data into anomaly or non-anomaly based on two 5G Open Radio Access Network (O-RAN) datasets with various key performance indicators (KPIs). Furthermore, we propose a strategy that devotes to labeling anomalous situations, leveraging the t-Distributed Stochastic Neighbor Embedding (tSNE) technique atop datasets enclosing multiple KPIs. The results were significant, with an accuracy above 90% for all use cases considered." @default.
- W4386336947 created "2023-09-01" @default.
- W4386336947 creator A5003146671 @default.
- W4386336947 creator A5004601058 @default.
- W4386336947 creator A5009698144 @default.
- W4386336947 creator A5025519781 @default.
- W4386336947 creator A5025856175 @default.
- W4386336947 creator A5028539906 @default.
- W4386336947 creator A5031385535 @default.
- W4386336947 creator A5034339327 @default.
- W4386336947 creator A5047386766 @default.
- W4386336947 creator A5048556407 @default.
- W4386336947 creator A5048890204 @default.
- W4386336947 date "2023-01-01" @default.
- W4386336947 modified "2023-10-01" @default.
- W4386336947 title "Machine Learning Applied to Anomaly Detection on 5G O-RAN Architecture" @default.
- W4386336947 cites W2793130454 @default.
- W4386336947 cites W2889339177 @default.
- W4386336947 cites W3007943882 @default.
- W4386336947 cites W3042792180 @default.
- W4386336947 cites W3094704314 @default.
- W4386336947 cites W3127355490 @default.
- W4386336947 cites W3155534886 @default.
- W4386336947 cites W3183765950 @default.
- W4386336947 cites W3187841728 @default.
- W4386336947 cites W3212772339 @default.
- W4386336947 cites W3217596786 @default.
- W4386336947 cites W4200261490 @default.
- W4386336947 cites W4285794073 @default.
- W4386336947 cites W4287887122 @default.
- W4386336947 cites W4295185261 @default.
- W4386336947 cites W4317796310 @default.
- W4386336947 doi "https://doi.org/10.1016/j.procs.2023.08.146" @default.
- W4386336947 hasPublicationYear "2023" @default.
- W4386336947 type Work @default.
- W4386336947 citedByCount "0" @default.
- W4386336947 crossrefType "journal-article" @default.
- W4386336947 hasAuthorship W4386336947A5003146671 @default.
- W4386336947 hasAuthorship W4386336947A5004601058 @default.
- W4386336947 hasAuthorship W4386336947A5009698144 @default.
- W4386336947 hasAuthorship W4386336947A5025519781 @default.
- W4386336947 hasAuthorship W4386336947A5025856175 @default.
- W4386336947 hasAuthorship W4386336947A5028539906 @default.
- W4386336947 hasAuthorship W4386336947A5031385535 @default.
- W4386336947 hasAuthorship W4386336947A5034339327 @default.
- W4386336947 hasAuthorship W4386336947A5047386766 @default.
- W4386336947 hasAuthorship W4386336947A5048556407 @default.
- W4386336947 hasAuthorship W4386336947A5048890204 @default.
- W4386336947 hasBestOaLocation W43863369471 @default.
- W4386336947 hasConcept C119857082 @default.
- W4386336947 hasConcept C121332964 @default.
- W4386336947 hasConcept C12267149 @default.
- W4386336947 hasConcept C124101348 @default.
- W4386336947 hasConcept C12997251 @default.
- W4386336947 hasConcept C135510737 @default.
- W4386336947 hasConcept C153180895 @default.
- W4386336947 hasConcept C154945302 @default.
- W4386336947 hasConcept C162324750 @default.
- W4386336947 hasConcept C179717631 @default.
- W4386336947 hasConcept C187736073 @default.
- W4386336947 hasConcept C26517878 @default.
- W4386336947 hasConcept C26873012 @default.
- W4386336947 hasConcept C38652104 @default.
- W4386336947 hasConcept C41008148 @default.
- W4386336947 hasConcept C41608201 @default.
- W4386336947 hasConcept C50644808 @default.
- W4386336947 hasConcept C60908668 @default.
- W4386336947 hasConcept C739882 @default.
- W4386336947 hasConcept C84525736 @default.
- W4386336947 hasConceptScore W4386336947C119857082 @default.
- W4386336947 hasConceptScore W4386336947C121332964 @default.
- W4386336947 hasConceptScore W4386336947C12267149 @default.
- W4386336947 hasConceptScore W4386336947C124101348 @default.
- W4386336947 hasConceptScore W4386336947C12997251 @default.
- W4386336947 hasConceptScore W4386336947C135510737 @default.
- W4386336947 hasConceptScore W4386336947C153180895 @default.
- W4386336947 hasConceptScore W4386336947C154945302 @default.
- W4386336947 hasConceptScore W4386336947C162324750 @default.
- W4386336947 hasConceptScore W4386336947C179717631 @default.
- W4386336947 hasConceptScore W4386336947C187736073 @default.
- W4386336947 hasConceptScore W4386336947C26517878 @default.
- W4386336947 hasConceptScore W4386336947C26873012 @default.
- W4386336947 hasConceptScore W4386336947C38652104 @default.
- W4386336947 hasConceptScore W4386336947C41008148 @default.
- W4386336947 hasConceptScore W4386336947C41608201 @default.
- W4386336947 hasConceptScore W4386336947C50644808 @default.
- W4386336947 hasConceptScore W4386336947C60908668 @default.
- W4386336947 hasConceptScore W4386336947C739882 @default.
- W4386336947 hasConceptScore W4386336947C84525736 @default.
- W4386336947 hasLocation W43863369471 @default.
- W4386336947 hasOpenAccess W4386336947 @default.
- W4386336947 hasPrimaryLocation W43863369471 @default.
- W4386336947 hasRelatedWork W2940336242 @default.
- W4386336947 hasRelatedWork W3097220695 @default.
- W4386336947 hasRelatedWork W3106494386 @default.
- W4386336947 hasRelatedWork W3168994312 @default.
- W4386336947 hasRelatedWork W3185179407 @default.
- W4386336947 hasRelatedWork W4231994957 @default.