Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386348549> ?p ?o ?g. }
- W4386348549 abstract "Abstract De novo protein design aims to explore uncharted sequence-and structure areas to generate novel proteins that have not been sampled by evolution. One of the main challenges in de novo design involves crafting “designable” structural templates that can guide the sequence search towards adopting the target structures. Here, we present an approach to learn patterns of protein structure based on a convolutional variational autoencoder, dubbed Genesis. We coupled Genesis with trRosetta to design sequences for a set of protein folds and found that Genesis is capable of reconstructing native-like distance-and angle distributions for five native folds and three novel, so-called “dark-matter” folds as a demonstration of generalizability. We used a high-throughput assay to characterize protease resistance of the designs, obtaining encouraging success rates for folded proteins and further biochemically characterized folded designs. The Genesis framework enables the exploration of the protein sequence and fold space within minutes and is not bound to specific protein topologies. Our approach addresses the backbone designability problem, showing that structural patterns in proteins can be efficiently learned by small neural networks and could ultimately contribute to the de novo design of proteins with new functions." @default.
- W4386348549 created "2023-09-02" @default.
- W4386348549 creator A5013638126 @default.
- W4386348549 creator A5022146582 @default.
- W4386348549 creator A5025811749 @default.
- W4386348549 creator A5028520858 @default.
- W4386348549 creator A5033465803 @default.
- W4386348549 creator A5040838563 @default.
- W4386348549 creator A5045362680 @default.
- W4386348549 creator A5073668643 @default.
- W4386348549 creator A5078450405 @default.
- W4386348549 creator A5080162380 @default.
- W4386348549 creator A5090348693 @default.
- W4386348549 date "2023-09-01" @default.
- W4386348549 modified "2023-10-16" @default.
- W4386348549 title "Exploring dark matter protein folds using deep learning" @default.
- W4386348549 cites W1548178570 @default.
- W4386348549 cites W1834588461 @default.
- W4386348549 cites W1969644422 @default.
- W4386348549 cites W1974312616 @default.
- W4386348549 cites W1981304244 @default.
- W4386348549 cites W1989415425 @default.
- W4386348549 cites W1997816460 @default.
- W4386348549 cites W2005763580 @default.
- W4386348549 cites W2008708467 @default.
- W4386348549 cites W2018295245 @default.
- W4386348549 cites W2028841335 @default.
- W4386348549 cites W2042997873 @default.
- W4386348549 cites W2062883649 @default.
- W4386348549 cites W2089597488 @default.
- W4386348549 cites W2102245393 @default.
- W4386348549 cites W2118130746 @default.
- W4386348549 cites W2121627241 @default.
- W4386348549 cites W2126570516 @default.
- W4386348549 cites W2130479394 @default.
- W4386348549 cites W2136724628 @default.
- W4386348549 cites W2151581834 @default.
- W4386348549 cites W2161072217 @default.
- W4386348549 cites W2173280871 @default.
- W4386348549 cites W2345741266 @default.
- W4386348549 cites W2491008760 @default.
- W4386348549 cites W2519539312 @default.
- W4386348549 cites W2735621019 @default.
- W4386348549 cites W2807841289 @default.
- W4386348549 cites W2883004247 @default.
- W4386348549 cites W2898459031 @default.
- W4386348549 cites W2964121744 @default.
- W4386348549 cites W2997234557 @default.
- W4386348549 cites W3017899883 @default.
- W4386348549 cites W3177828909 @default.
- W4386348549 cites W3186179742 @default.
- W4386348549 cites W3215918380 @default.
- W4386348549 cites W3216341763 @default.
- W4386348549 cites W4210861939 @default.
- W4386348549 cites W4236236547 @default.
- W4386348549 cites W4296032638 @default.
- W4386348549 cites W4300961933 @default.
- W4386348549 cites W4311179098 @default.
- W4386348549 cites W4375858802 @default.
- W4386348549 cites W4376131109 @default.
- W4386348549 cites W4383957026 @default.
- W4386348549 doi "https://doi.org/10.1101/2023.08.30.555621" @default.
- W4386348549 hasPublicationYear "2023" @default.
- W4386348549 type Work @default.
- W4386348549 citedByCount "0" @default.
- W4386348549 crossrefType "posted-content" @default.
- W4386348549 hasAuthorship W4386348549A5013638126 @default.
- W4386348549 hasAuthorship W4386348549A5022146582 @default.
- W4386348549 hasAuthorship W4386348549A5025811749 @default.
- W4386348549 hasAuthorship W4386348549A5028520858 @default.
- W4386348549 hasAuthorship W4386348549A5033465803 @default.
- W4386348549 hasAuthorship W4386348549A5040838563 @default.
- W4386348549 hasAuthorship W4386348549A5045362680 @default.
- W4386348549 hasAuthorship W4386348549A5073668643 @default.
- W4386348549 hasAuthorship W4386348549A5078450405 @default.
- W4386348549 hasAuthorship W4386348549A5080162380 @default.
- W4386348549 hasAuthorship W4386348549A5090348693 @default.
- W4386348549 hasBestOaLocation W43863485491 @default.
- W4386348549 hasConcept C101738243 @default.
- W4386348549 hasConcept C108583219 @default.
- W4386348549 hasConcept C132954091 @default.
- W4386348549 hasConcept C147816474 @default.
- W4386348549 hasConcept C152769699 @default.
- W4386348549 hasConcept C154945302 @default.
- W4386348549 hasConcept C181199279 @default.
- W4386348549 hasConcept C202444582 @default.
- W4386348549 hasConcept C2778112365 @default.
- W4386348549 hasConcept C30711495 @default.
- W4386348549 hasConcept C33923547 @default.
- W4386348549 hasConcept C41008148 @default.
- W4386348549 hasConcept C47701112 @default.
- W4386348549 hasConcept C54355233 @default.
- W4386348549 hasConcept C55493867 @default.
- W4386348549 hasConcept C70721500 @default.
- W4386348549 hasConcept C81363708 @default.
- W4386348549 hasConcept C86803240 @default.
- W4386348549 hasConceptScore W4386348549C101738243 @default.
- W4386348549 hasConceptScore W4386348549C108583219 @default.
- W4386348549 hasConceptScore W4386348549C132954091 @default.
- W4386348549 hasConceptScore W4386348549C147816474 @default.