Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386350812> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4386350812 endingPage "2143" @default.
- W4386350812 startingPage "2121" @default.
- W4386350812 abstract "By identifying and responding to any malicious behavior that could endanger the system, the Intrusion Detection System (IDS) is crucial for preserving the security of the Industrial Internet of Things (IIoT) network. The benefit of anomaly-based IDS is that they are able to recognize zero-day attacks due to the fact that they do not rely on a signature database to identify abnormal activity. In order to improve control over datasets and the process, this study proposes using an automated machine learning (AutoML) technique to automate the machine learning processes for IDS. Our ground-breaking architecture, known as AID4I, makes use of automatic machine learning methods for intrusion detection. Through automation of preprocessing, feature selection, model selection, and hyperparameter tuning, the objective is to identify an appropriate machine learning model for intrusion detection. Experimental studies demonstrate that the AID4I framework successfully proposes a suitable model. The integrity, security, and confidentiality of data transmitted across the IIoT network can be ensured by automating machine learning processes in the IDS to enhance its capacity to identify and stop threatening activities. With a comprehensive solution that takes advantage of the latest advances in automated machine learning methods to improve network security, AID4I is a powerful and effective instrument for intrusion detection. In preprocessing module, three distinct imputation methods are utilized to handle missing data, ensuring the robustness of the intrusion detection system in the presence of incomplete information. Feature selection module adopts a hybrid approach that combines Shapley values and genetic algorithm. The Parameter Optimization module encompasses a diverse set of 14 classification methods, allowing for thorough exploration and optimization of the parameters associated with each algorithm. By carefully tuning these parameters, the framework enhances its adaptability and accuracy in identifying potential intrusions. Experimental results demonstrate that the AID4I framework can achieve high levels of accuracy in detecting network intrusions up to 14.39% on public datasets, outperforming traditional intrusion detection methods while concurrently reducing the elapsed time for training and testing." @default.
- W4386350812 created "2023-09-02" @default.
- W4386350812 creator A5007685903 @default.
- W4386350812 creator A5022450296 @default.
- W4386350812 date "2023-01-01" @default.
- W4386350812 modified "2023-10-16" @default.
- W4386350812 title "AID4I: An Intrusion Detection Framework for Industrial Internet of Things Using Automated Machine Learning" @default.
- W4386350812 doi "https://doi.org/10.32604/cmc.2023.040287" @default.
- W4386350812 hasPublicationYear "2023" @default.
- W4386350812 type Work @default.
- W4386350812 citedByCount "0" @default.
- W4386350812 crossrefType "journal-article" @default.
- W4386350812 hasAuthorship W4386350812A5007685903 @default.
- W4386350812 hasAuthorship W4386350812A5022450296 @default.
- W4386350812 hasBestOaLocation W43863508121 @default.
- W4386350812 hasConcept C104317684 @default.
- W4386350812 hasConcept C10551718 @default.
- W4386350812 hasConcept C119857082 @default.
- W4386350812 hasConcept C124101348 @default.
- W4386350812 hasConcept C137524506 @default.
- W4386350812 hasConcept C148483581 @default.
- W4386350812 hasConcept C154945302 @default.
- W4386350812 hasConcept C185592680 @default.
- W4386350812 hasConcept C34736171 @default.
- W4386350812 hasConcept C35525427 @default.
- W4386350812 hasConcept C41008148 @default.
- W4386350812 hasConcept C55493867 @default.
- W4386350812 hasConcept C63479239 @default.
- W4386350812 hasConceptScore W4386350812C104317684 @default.
- W4386350812 hasConceptScore W4386350812C10551718 @default.
- W4386350812 hasConceptScore W4386350812C119857082 @default.
- W4386350812 hasConceptScore W4386350812C124101348 @default.
- W4386350812 hasConceptScore W4386350812C137524506 @default.
- W4386350812 hasConceptScore W4386350812C148483581 @default.
- W4386350812 hasConceptScore W4386350812C154945302 @default.
- W4386350812 hasConceptScore W4386350812C185592680 @default.
- W4386350812 hasConceptScore W4386350812C34736171 @default.
- W4386350812 hasConceptScore W4386350812C35525427 @default.
- W4386350812 hasConceptScore W4386350812C41008148 @default.
- W4386350812 hasConceptScore W4386350812C55493867 @default.
- W4386350812 hasConceptScore W4386350812C63479239 @default.
- W4386350812 hasIssue "2" @default.
- W4386350812 hasLocation W43863508121 @default.
- W4386350812 hasOpenAccess W4386350812 @default.
- W4386350812 hasPrimaryLocation W43863508121 @default.
- W4386350812 hasRelatedWork W1975233362 @default.
- W4386350812 hasRelatedWork W2109563611 @default.
- W4386350812 hasRelatedWork W2128167806 @default.
- W4386350812 hasRelatedWork W2152742912 @default.
- W4386350812 hasRelatedWork W2217592955 @default.
- W4386350812 hasRelatedWork W2347501756 @default.
- W4386350812 hasRelatedWork W2378000868 @default.
- W4386350812 hasRelatedWork W2786237082 @default.
- W4386350812 hasRelatedWork W2924126763 @default.
- W4386350812 hasRelatedWork W16836940 @default.
- W4386350812 hasVolume "76" @default.
- W4386350812 isParatext "false" @default.
- W4386350812 isRetracted "false" @default.
- W4386350812 workType "article" @default.