Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386352014> ?p ?o ?g. }
- W4386352014 abstract "ABSTRACT Our sense of hearing is mediated by cochlear hair cells, localized within the sensory epithelium called the organ of Corti. There are two types of hair cells in the cochlea, which are organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains a few thousands of hair cells, and their survival is essential for our perception of sound because they are terminally differentiated and do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. However, the sheer number of cells along the cochlea makes manual quantification impractical. Machine learning can be used to overcome this challenge by automating the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, human, pig and guinea pig cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 90,000 hair cells, all of which have been manually identified and annotated as one of two cell types: inner hair cells and outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to supply other groups within the hearing research community with the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease." @default.
- W4386352014 created "2023-09-02" @default.
- W4386352014 creator A5000242573 @default.
- W4386352014 creator A5016045896 @default.
- W4386352014 creator A5016494566 @default.
- W4386352014 creator A5019981121 @default.
- W4386352014 creator A5020572686 @default.
- W4386352014 creator A5021976211 @default.
- W4386352014 creator A5023690001 @default.
- W4386352014 creator A5025356118 @default.
- W4386352014 creator A5030868732 @default.
- W4386352014 creator A5033318249 @default.
- W4386352014 creator A5035131337 @default.
- W4386352014 creator A5035269096 @default.
- W4386352014 creator A5036485119 @default.
- W4386352014 creator A5040407689 @default.
- W4386352014 creator A5043666171 @default.
- W4386352014 creator A5048108405 @default.
- W4386352014 creator A5049173130 @default.
- W4386352014 creator A5049498078 @default.
- W4386352014 creator A5051315497 @default.
- W4386352014 creator A5052214589 @default.
- W4386352014 creator A5052416949 @default.
- W4386352014 creator A5052824063 @default.
- W4386352014 creator A5053343606 @default.
- W4386352014 creator A5054754297 @default.
- W4386352014 creator A5055681953 @default.
- W4386352014 creator A5056035045 @default.
- W4386352014 creator A5062796080 @default.
- W4386352014 creator A5065750854 @default.
- W4386352014 creator A5070051988 @default.
- W4386352014 creator A5070633413 @default.
- W4386352014 creator A5072316782 @default.
- W4386352014 creator A5074877787 @default.
- W4386352014 creator A5078345340 @default.
- W4386352014 creator A5079167033 @default.
- W4386352014 creator A5079604577 @default.
- W4386352014 creator A5083691330 @default.
- W4386352014 creator A5085060592 @default.
- W4386352014 creator A5087492882 @default.
- W4386352014 creator A5089731280 @default.
- W4386352014 creator A5092819560 @default.
- W4386352014 creator A5092819561 @default.
- W4386352014 creator A5092819562 @default.
- W4386352014 creator A5092819563 @default.
- W4386352014 date "2023-09-01" @default.
- W4386352014 modified "2023-10-16" @default.
- W4386352014 title "Large-scale annotated dataset for cochlear hair cell detection and classification" @default.
- W4386352014 cites W1861492603 @default.
- W4386352014 cites W1968788880 @default.
- W4386352014 cites W2043379002 @default.
- W4386352014 cites W2047465917 @default.
- W4386352014 cites W2176417291 @default.
- W4386352014 cites W2513060759 @default.
- W4386352014 cites W2559725989 @default.
- W4386352014 cites W2884367402 @default.
- W4386352014 cites W2910607117 @default.
- W4386352014 cites W2969698119 @default.
- W4386352014 cites W3037387467 @default.
- W4386352014 cites W3038757567 @default.
- W4386352014 cites W3136807286 @default.
- W4386352014 cites W3178158594 @default.
- W4386352014 cites W3183412547 @default.
- W4386352014 cites W3192495122 @default.
- W4386352014 cites W3200164630 @default.
- W4386352014 cites W4213424097 @default.
- W4386352014 cites W4281734057 @default.
- W4386352014 cites W4353021617 @default.
- W4386352014 doi "https://doi.org/10.1101/2023.08.30.553559" @default.
- W4386352014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37693382" @default.
- W4386352014 hasPublicationYear "2023" @default.
- W4386352014 type Work @default.
- W4386352014 citedByCount "0" @default.
- W4386352014 crossrefType "posted-content" @default.
- W4386352014 hasAuthorship W4386352014A5000242573 @default.
- W4386352014 hasAuthorship W4386352014A5016045896 @default.
- W4386352014 hasAuthorship W4386352014A5016494566 @default.
- W4386352014 hasAuthorship W4386352014A5019981121 @default.
- W4386352014 hasAuthorship W4386352014A5020572686 @default.
- W4386352014 hasAuthorship W4386352014A5021976211 @default.
- W4386352014 hasAuthorship W4386352014A5023690001 @default.
- W4386352014 hasAuthorship W4386352014A5025356118 @default.
- W4386352014 hasAuthorship W4386352014A5030868732 @default.
- W4386352014 hasAuthorship W4386352014A5033318249 @default.
- W4386352014 hasAuthorship W4386352014A5035131337 @default.
- W4386352014 hasAuthorship W4386352014A5035269096 @default.
- W4386352014 hasAuthorship W4386352014A5036485119 @default.
- W4386352014 hasAuthorship W4386352014A5040407689 @default.
- W4386352014 hasAuthorship W4386352014A5043666171 @default.
- W4386352014 hasAuthorship W4386352014A5048108405 @default.
- W4386352014 hasAuthorship W4386352014A5049173130 @default.
- W4386352014 hasAuthorship W4386352014A5049498078 @default.
- W4386352014 hasAuthorship W4386352014A5051315497 @default.
- W4386352014 hasAuthorship W4386352014A5052214589 @default.
- W4386352014 hasAuthorship W4386352014A5052416949 @default.
- W4386352014 hasAuthorship W4386352014A5052824063 @default.
- W4386352014 hasAuthorship W4386352014A5053343606 @default.
- W4386352014 hasAuthorship W4386352014A5054754297 @default.
- W4386352014 hasAuthorship W4386352014A5055681953 @default.
- W4386352014 hasAuthorship W4386352014A5056035045 @default.