Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386352756> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4386352756 abstract "Thyroid gland segmentation in ultrasound images is essential in thyroid disease diagnoses. However, the relatively low quality and the speckle noise in ultrasound images make the organ tissues ambiguous and inhomogeneous. Besides, the thyroid anatomical parts may be separated by a significant distance. In this paper, we proposed a novel Attention-guided Non-local Residual Network (ANR-Net) for thyroid segmentation in ultrasound image, which extracts the short-long relationship to boost thyroid gland segmentation performance. In the proposed network, we deploy two non-local modules to learn the global information of the image at shallow layers. Moreover, the residual features extracted in the first step are used to guide the training of the network in the second step. Experimental results on datasets demonstrate that our proposed network outperforms the state-of-the-art segmentation methods. Our code is available at https://github.com/zyairelu/ANR-Net." @default.
- W4386352756 created "2023-09-02" @default.
- W4386352756 creator A5018740222 @default.
- W4386352756 creator A5025027284 @default.
- W4386352756 creator A5084875333 @default.
- W4386352756 creator A5086186754 @default.
- W4386352756 creator A5087486639 @default.
- W4386352756 date "2023-04-18" @default.
- W4386352756 modified "2023-09-27" @default.
- W4386352756 title "ANR-NET: Attention-Guided Non-Local Residual Network for Thyroid Segmentation in Ultrasound Image" @default.
- W4386352756 cites W1599471721 @default.
- W4386352756 cites W1901129140 @default.
- W4386352756 cites W2113275954 @default.
- W4386352756 cites W2114866336 @default.
- W4386352756 cites W2194775991 @default.
- W4386352756 cites W2560023338 @default.
- W4386352756 cites W2594069063 @default.
- W4386352756 cites W2752782242 @default.
- W4386352756 cites W2912684384 @default.
- W4386352756 cites W2963091558 @default.
- W4386352756 cites W2981899103 @default.
- W4386352756 cites W3006075760 @default.
- W4386352756 cites W3191221135 @default.
- W4386352756 cites W3200061138 @default.
- W4386352756 cites W4210706554 @default.
- W4386352756 doi "https://doi.org/10.1109/isbi53787.2023.10230487" @default.
- W4386352756 hasPublicationYear "2023" @default.
- W4386352756 type Work @default.
- W4386352756 citedByCount "0" @default.
- W4386352756 crossrefType "proceedings-article" @default.
- W4386352756 hasAuthorship W4386352756A5018740222 @default.
- W4386352756 hasAuthorship W4386352756A5025027284 @default.
- W4386352756 hasAuthorship W4386352756A5084875333 @default.
- W4386352756 hasAuthorship W4386352756A5086186754 @default.
- W4386352756 hasAuthorship W4386352756A5087486639 @default.
- W4386352756 hasConcept C102290492 @default.
- W4386352756 hasConcept C11413529 @default.
- W4386352756 hasConcept C124504099 @default.
- W4386352756 hasConcept C126322002 @default.
- W4386352756 hasConcept C153180895 @default.
- W4386352756 hasConcept C154945302 @default.
- W4386352756 hasConcept C155512373 @default.
- W4386352756 hasConcept C180940675 @default.
- W4386352756 hasConcept C31972630 @default.
- W4386352756 hasConcept C41008148 @default.
- W4386352756 hasConcept C526584372 @default.
- W4386352756 hasConcept C71924100 @default.
- W4386352756 hasConcept C89600930 @default.
- W4386352756 hasConceptScore W4386352756C102290492 @default.
- W4386352756 hasConceptScore W4386352756C11413529 @default.
- W4386352756 hasConceptScore W4386352756C124504099 @default.
- W4386352756 hasConceptScore W4386352756C126322002 @default.
- W4386352756 hasConceptScore W4386352756C153180895 @default.
- W4386352756 hasConceptScore W4386352756C154945302 @default.
- W4386352756 hasConceptScore W4386352756C155512373 @default.
- W4386352756 hasConceptScore W4386352756C180940675 @default.
- W4386352756 hasConceptScore W4386352756C31972630 @default.
- W4386352756 hasConceptScore W4386352756C41008148 @default.
- W4386352756 hasConceptScore W4386352756C526584372 @default.
- W4386352756 hasConceptScore W4386352756C71924100 @default.
- W4386352756 hasConceptScore W4386352756C89600930 @default.
- W4386352756 hasFunder F4320321001 @default.
- W4386352756 hasFunder F4320334977 @default.
- W4386352756 hasFunder F4320337504 @default.
- W4386352756 hasLocation W43863527561 @default.
- W4386352756 hasOpenAccess W4386352756 @default.
- W4386352756 hasPrimaryLocation W43863527561 @default.
- W4386352756 hasRelatedWork W1669643531 @default.
- W4386352756 hasRelatedWork W1982826852 @default.
- W4386352756 hasRelatedWork W2005437358 @default.
- W4386352756 hasRelatedWork W2008656436 @default.
- W4386352756 hasRelatedWork W2023558673 @default.
- W4386352756 hasRelatedWork W2045480779 @default.
- W4386352756 hasRelatedWork W2110230079 @default.
- W4386352756 hasRelatedWork W2134924024 @default.
- W4386352756 hasRelatedWork W2517104666 @default.
- W4386352756 hasRelatedWork W2613186388 @default.
- W4386352756 isParatext "false" @default.
- W4386352756 isRetracted "false" @default.
- W4386352756 workType "article" @default.