Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386352990> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4386352990 abstract "Food is God for the people. Grain production has a bearing on the national economy and people's livelihood. This study takes the Daiyue District of Tai 'an City in Shandong Province as the research area. This paper uses multi-source remote sensing images to fuse Zhuhai-1 hyperspectral images (OHS hyperspectral images) and GF-1 high-resolution images using a hyperspherical color spatial resolution merging algorithm. The feasibility of multi-source optical image fusion in winter wheat identification is explored. Meanwhile, this paper compares OHS hyperspectral image with the Landsat8 OLI image to explore the differences between hyperspectral and multispectral in extracting winter wheat areas. Firstly, this study combines land use data to select the optimal time phase and the best wave combination to extract the range of cultivated land in the study area. Secondly, the study extracts image features (texture features, spectral features, and index features). It builds Machine Learning models (Random Forest classification, Support Vector Machine classification, and Maximum Likelihood classification) to decode and identify winter wheat and calculates its planted area using the Dimidiate Pixel Model. Finally, the extraction results of fused images are compared and analyzed with those of OHS and OLI images. The results show that the overall classification accuracy of the fusion images is the highest, and the accuracy of the OHS images is higher than that of the OLI images. The Random Forest classification accuracy of HCS fused images is as high as 98.15%, and the Maximum Likelihood classification is 96.13%. The Random Forest classification accuracy of OHS images is 94.62%, the Support Vector Machine accuracy is 93.87%, and the Maximum Likelihood classification is 91.49%. Combining the statistical data and calculating the relative error, it can be seen that the Random Forest classification of the fused images has the lowest relative error of 2.20%, and the Maximum Likelihood classification has a slightly larger relative error of 7.74%. This study shows that the fusion of hyperspectral and high-resolution images can significantly improve the accuracy of area extraction in winter wheat. In winter wheat identification, OHS hyperspectral image has significant advantages over Landsat8 OLI multispectral image. Random Forest classification is more suitable for winter wheat identification and area extraction. The results of this study could provide a reference for hyperspectral remote sensing identification of winter wheat and contribute to the scientific regulation and precise management of agricultural production." @default.
- W4386352990 created "2023-09-02" @default.
- W4386352990 creator A5013167918 @default.
- W4386352990 creator A5020796294 @default.
- W4386352990 creator A5026358206 @default.
- W4386352990 creator A5085741904 @default.
- W4386352990 date "2023-07-25" @default.
- W4386352990 modified "2023-09-27" @default.
- W4386352990 title "Winter wheat identification and area extraction based on hyperspectral/multispectral image fusion<sup>*</sup>" @default.
- W4386352990 cites W2971804119 @default.
- W4386352990 cites W2971890297 @default.
- W4386352990 cites W4292794316 @default.
- W4386352990 doi "https://doi.org/10.1109/agro-geoinformatics59224.2023.10233645" @default.
- W4386352990 hasPublicationYear "2023" @default.
- W4386352990 type Work @default.
- W4386352990 citedByCount "0" @default.
- W4386352990 crossrefType "proceedings-article" @default.
- W4386352990 hasAuthorship W4386352990A5013167918 @default.
- W4386352990 hasAuthorship W4386352990A5020796294 @default.
- W4386352990 hasAuthorship W4386352990A5026358206 @default.
- W4386352990 hasAuthorship W4386352990A5085741904 @default.
- W4386352990 hasConcept C115961682 @default.
- W4386352990 hasConcept C116834253 @default.
- W4386352990 hasConcept C12267149 @default.
- W4386352990 hasConcept C138885662 @default.
- W4386352990 hasConcept C153180895 @default.
- W4386352990 hasConcept C154945302 @default.
- W4386352990 hasConcept C158525013 @default.
- W4386352990 hasConcept C159078339 @default.
- W4386352990 hasConcept C160633673 @default.
- W4386352990 hasConcept C169258074 @default.
- W4386352990 hasConcept C173163844 @default.
- W4386352990 hasConcept C205372480 @default.
- W4386352990 hasConcept C205649164 @default.
- W4386352990 hasConcept C41008148 @default.
- W4386352990 hasConcept C41895202 @default.
- W4386352990 hasConcept C59822182 @default.
- W4386352990 hasConcept C62649853 @default.
- W4386352990 hasConcept C69744172 @default.
- W4386352990 hasConcept C75294576 @default.
- W4386352990 hasConcept C86803240 @default.
- W4386352990 hasConceptScore W4386352990C115961682 @default.
- W4386352990 hasConceptScore W4386352990C116834253 @default.
- W4386352990 hasConceptScore W4386352990C12267149 @default.
- W4386352990 hasConceptScore W4386352990C138885662 @default.
- W4386352990 hasConceptScore W4386352990C153180895 @default.
- W4386352990 hasConceptScore W4386352990C154945302 @default.
- W4386352990 hasConceptScore W4386352990C158525013 @default.
- W4386352990 hasConceptScore W4386352990C159078339 @default.
- W4386352990 hasConceptScore W4386352990C160633673 @default.
- W4386352990 hasConceptScore W4386352990C169258074 @default.
- W4386352990 hasConceptScore W4386352990C173163844 @default.
- W4386352990 hasConceptScore W4386352990C205372480 @default.
- W4386352990 hasConceptScore W4386352990C205649164 @default.
- W4386352990 hasConceptScore W4386352990C41008148 @default.
- W4386352990 hasConceptScore W4386352990C41895202 @default.
- W4386352990 hasConceptScore W4386352990C59822182 @default.
- W4386352990 hasConceptScore W4386352990C62649853 @default.
- W4386352990 hasConceptScore W4386352990C69744172 @default.
- W4386352990 hasConceptScore W4386352990C75294576 @default.
- W4386352990 hasConceptScore W4386352990C86803240 @default.
- W4386352990 hasFunder F4320321001 @default.
- W4386352990 hasFunder F4320324174 @default.
- W4386352990 hasLocation W43863529901 @default.
- W4386352990 hasOpenAccess W4386352990 @default.
- W4386352990 hasPrimaryLocation W43863529901 @default.
- W4386352990 hasRelatedWork W2009141370 @default.
- W4386352990 hasRelatedWork W2046570986 @default.
- W4386352990 hasRelatedWork W2071004677 @default.
- W4386352990 hasRelatedWork W2148977782 @default.
- W4386352990 hasRelatedWork W2280811193 @default.
- W4386352990 hasRelatedWork W2540644541 @default.
- W4386352990 hasRelatedWork W2597577638 @default.
- W4386352990 hasRelatedWork W2758145160 @default.
- W4386352990 hasRelatedWork W2776398399 @default.
- W4386352990 hasRelatedWork W3187789630 @default.
- W4386352990 isParatext "false" @default.
- W4386352990 isRetracted "false" @default.
- W4386352990 workType "article" @default.