Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386364976> ?p ?o ?g. }
- W4386364976 endingPage "113790" @default.
- W4386364976 startingPage "113790" @default.
- W4386364976 abstract "Forest fragmentation has been increasingly exacerbated by deforestation, urbanization, and agricultural expansion. Monitoring the forest fragments via the lens of tree-crown scale leaf phenology is critical to understand tree species phenological responses to climate change and identify the fragment species vulnerable to environmental disturbance. Despite advances in remote sensing for phenology monitoring, detecting tree-crown scale leaf phenology in fragmented forests remains challenging. Simultaneous tracking of key spring phenological events that are crucial to ecosystem functions and climate change responses is also neglected. To address these challenges, we develop a novel tree-crown scale remote sensing phenological monitoring framework to characterize all the critical spring phenological events of individual trees of deciduous forest fragments, with Trelease Woods in Champaign, Illinois as a case study. The novel framework comprises four components: 1) generate high spatiotemporal resolution fusion imagery from multi-scale satellite time series with a hybrid deep learning fusion model; 2) calibrate PlanetScope imagery time series with fusion data using histogram matching; 3) model tree-crown scale phenology trajectory with a Beck logistic-based method; 4) detect a diversity of tree-crown scale phenological events using several phenological metric extraction methods (i.e., threshold- and curve feature-based methods). Combined with weekly in-situ phenological observations of 123 individual trees across 12 broadleaf species from 2017 to 2020, the framework effectively bridges the satellite- and field-based phenological measures for the key spring phenological events (i.e., budswell, budburst, leaf expansion, and leaf maturity events) at the tree-crown scale, particularly for large individuals (RMSE <1 week for most events). Calibration of PlanetScope imagery using multi-scale satellite fusion data in consideration of landscape fragmentation is critical for monitoring tree phenology of forest fragments. Compared to curve feature-based methods, threshold-based phenometric extraction methods demonstrate enhanced capability in detecting spring leaf phenological dynamics of individual trees. Among the phenological events, full leaf out and early leaf expansion events are retrieved with high accuracy using calibrated PlanetScope time series (RMSE from 3 to 5 days and R-squared higher than 0.8). With both intensive satellite and field phenological efforts, this novel framework is at the forefront of interpreting tree-crown scale remotely sensed phenological metrics in the context of biologically meaningful field phenological events in fragmented forest setting." @default.
- W4386364976 created "2023-09-02" @default.
- W4386364976 creator A5027782178 @default.
- W4386364976 creator A5053986999 @default.
- W4386364976 creator A5079380048 @default.
- W4386364976 creator A5084855690 @default.
- W4386364976 date "2023-11-01" @default.
- W4386364976 modified "2023-10-18" @default.
- W4386364976 title "Monitoring spring leaf phenology of individual trees in a temperate forest fragment with multi-scale satellite time series" @default.
- W4386364976 cites W1206355369 @default.
- W4386364976 cites W1970268633 @default.
- W4386364976 cites W1971813093 @default.
- W4386364976 cites W1989019129 @default.
- W4386364976 cites W1992930457 @default.
- W4386364976 cites W1993389514 @default.
- W4386364976 cites W1994577297 @default.
- W4386364976 cites W2007401784 @default.
- W4386364976 cites W2007621088 @default.
- W4386364976 cites W2009501176 @default.
- W4386364976 cites W2018636632 @default.
- W4386364976 cites W2035234551 @default.
- W4386364976 cites W2041177409 @default.
- W4386364976 cites W2054607629 @default.
- W4386364976 cites W2068345895 @default.
- W4386364976 cites W2072093516 @default.
- W4386364976 cites W2094677081 @default.
- W4386364976 cites W2097657595 @default.
- W4386364976 cites W2099098700 @default.
- W4386364976 cites W2099428109 @default.
- W4386364976 cites W2105871261 @default.
- W4386364976 cites W2106233095 @default.
- W4386364976 cites W2113410727 @default.
- W4386364976 cites W2115952782 @default.
- W4386364976 cites W2127724826 @default.
- W4386364976 cites W2130430294 @default.
- W4386364976 cites W2138751033 @default.
- W4386364976 cites W2138872120 @default.
- W4386364976 cites W2142308783 @default.
- W4386364976 cites W2145058632 @default.
- W4386364976 cites W2147791966 @default.
- W4386364976 cites W2151011640 @default.
- W4386364976 cites W2155490712 @default.
- W4386364976 cites W2167869331 @default.
- W4386364976 cites W2280673236 @default.
- W4386364976 cites W2297155841 @default.
- W4386364976 cites W2552805558 @default.
- W4386364976 cites W2592786811 @default.
- W4386364976 cites W2609546815 @default.
- W4386364976 cites W2617760100 @default.
- W4386364976 cites W2767193133 @default.
- W4386364976 cites W2787970086 @default.
- W4386364976 cites W2789380519 @default.
- W4386364976 cites W2793603191 @default.
- W4386364976 cites W2794396966 @default.
- W4386364976 cites W2794421859 @default.
- W4386364976 cites W2806321331 @default.
- W4386364976 cites W2890263737 @default.
- W4386364976 cites W2897285410 @default.
- W4386364976 cites W2946296362 @default.
- W4386364976 cites W2952278905 @default.
- W4386364976 cites W2954461183 @default.
- W4386364976 cites W2964603480 @default.
- W4386364976 cites W2982171921 @default.
- W4386364976 cites W2990259822 @default.
- W4386364976 cites W2991324815 @default.
- W4386364976 cites W2994662801 @default.
- W4386364976 cites W3004741759 @default.
- W4386364976 cites W3018968758 @default.
- W4386364976 cites W3020786514 @default.
- W4386364976 cites W3026341921 @default.
- W4386364976 cites W3033854831 @default.
- W4386364976 cites W3039458596 @default.
- W4386364976 cites W3039531289 @default.
- W4386364976 cites W3101252928 @default.
- W4386364976 cites W3108300466 @default.
- W4386364976 cites W3121455861 @default.
- W4386364976 cites W3135430237 @default.
- W4386364976 cites W3165136640 @default.
- W4386364976 cites W3206706034 @default.
- W4386364976 cites W4200288366 @default.
- W4386364976 cites W4224256310 @default.
- W4386364976 cites W4224265662 @default.
- W4386364976 doi "https://doi.org/10.1016/j.rse.2023.113790" @default.
- W4386364976 hasPublicationYear "2023" @default.
- W4386364976 type Work @default.
- W4386364976 citedByCount "0" @default.
- W4386364976 crossrefType "journal-article" @default.
- W4386364976 hasAuthorship W4386364976A5027782178 @default.
- W4386364976 hasAuthorship W4386364976A5053986999 @default.
- W4386364976 hasAuthorship W4386364976A5079380048 @default.
- W4386364976 hasAuthorship W4386364976A5084855690 @default.
- W4386364976 hasConcept C132651083 @default.
- W4386364976 hasConcept C18903297 @default.
- W4386364976 hasConcept C205649164 @default.
- W4386364976 hasConcept C33283694 @default.
- W4386364976 hasConcept C39432304 @default.
- W4386364976 hasConcept C51417038 @default.
- W4386364976 hasConcept C62649853 @default.