Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386365564> ?p ?o ?g. }
- W4386365564 endingPage "100121" @default.
- W4386365564 startingPage "100121" @default.
- W4386365564 abstract "The rise of artificial intelligence (AI) based algorithms has gained a lot of interest in the pharmaceutical development field. Our study demonstrates utilization of traditional machine learning techniques such as random forest (RF), support-vector machine (SVM), extreme gradient boosting (XGBoost), deep neural network (DNN) as well as advanced deep learning techniques like gated recurrent unit-based DNN (GRU-DNN) and graph neural network (GNN), towards predicting human ether-á-go-go related gene (hERG) derived toxicity. Using the largest hERG dataset derived to date, we have utilized 203853 and 87366 compounds for training and testing the models, respectively. The results show that GNN, SVM, XGBoost, DNN, RF, and GRU-DNN all performed well, with validation set AUC ROC scores equals 0.96, 0.95, 0.95, 0.94, 0.94 and 0.94, respectively. The GNN was found to be the top performing model based on predictive power and generalizability. The GNN technique is free of any feature engineering steps while having a minimal human intervention. The GNN approach may serve as a basis for comprehensive automation in predictive toxicology. We believe that the models presented here may serve as a promising tool, both for academic institutes as well as pharmaceutical industries, in predicting hERG-liability in new molecular structures." @default.
- W4386365564 created "2023-09-02" @default.
- W4386365564 creator A5000627837 @default.
- W4386365564 creator A5025044657 @default.
- W4386365564 creator A5031663982 @default.
- W4386365564 creator A5033418516 @default.
- W4386365564 creator A5048888640 @default.
- W4386365564 creator A5067014994 @default.
- W4386365564 creator A5075042924 @default.
- W4386365564 date "2023-01-01" @default.
- W4386365564 modified "2023-09-30" @default.
- W4386365564 title "hERG-Toxicity Prediction using Traditional Machine Learning and Advanced Deep Learning Techniques" @default.
- W4386365564 cites W1968098810 @default.
- W4386365564 cites W1969644115 @default.
- W4386365564 cites W1973576889 @default.
- W4386365564 cites W1978536786 @default.
- W4386365564 cites W1981801253 @default.
- W4386365564 cites W1987356051 @default.
- W4386365564 cites W1992826795 @default.
- W4386365564 cites W2019604882 @default.
- W4386365564 cites W2041176759 @default.
- W4386365564 cites W2051669906 @default.
- W4386365564 cites W2061587885 @default.
- W4386365564 cites W2065682273 @default.
- W4386365564 cites W2087347434 @default.
- W4386365564 cites W2098860390 @default.
- W4386365564 cites W2101202052 @default.
- W4386365564 cites W2126704821 @default.
- W4386365564 cites W2140784695 @default.
- W4386365564 cites W2157331557 @default.
- W4386365564 cites W2163922914 @default.
- W4386365564 cites W2264043469 @default.
- W4386365564 cites W2731161895 @default.
- W4386365564 cites W2791355014 @default.
- W4386365564 cites W2794245536 @default.
- W4386365564 cites W2801229532 @default.
- W4386365564 cites W2815914914 @default.
- W4386365564 cites W2914969288 @default.
- W4386365564 cites W2949676527 @default.
- W4386365564 cites W2962785940 @default.
- W4386365564 cites W2963432161 @default.
- W4386365564 cites W2963608065 @default.
- W4386365564 cites W2967537349 @default.
- W4386365564 cites W2969759649 @default.
- W4386365564 cites W2990045899 @default.
- W4386365564 cites W3003259175 @default.
- W4386365564 cites W3004468049 @default.
- W4386365564 cites W3004843729 @default.
- W4386365564 cites W3027697420 @default.
- W4386365564 cites W3033251065 @default.
- W4386365564 cites W3102476541 @default.
- W4386365564 cites W3109675364 @default.
- W4386365564 cites W3152893301 @default.
- W4386365564 cites W3193786816 @default.
- W4386365564 cites W4205123202 @default.
- W4386365564 doi "https://doi.org/10.1016/j.crtox.2023.100121" @default.
- W4386365564 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37701072" @default.
- W4386365564 hasPublicationYear "2023" @default.
- W4386365564 type Work @default.
- W4386365564 citedByCount "0" @default.
- W4386365564 crossrefType "journal-article" @default.
- W4386365564 hasAuthorship W4386365564A5000627837 @default.
- W4386365564 hasAuthorship W4386365564A5025044657 @default.
- W4386365564 hasAuthorship W4386365564A5031663982 @default.
- W4386365564 hasAuthorship W4386365564A5033418516 @default.
- W4386365564 hasAuthorship W4386365564A5048888640 @default.
- W4386365564 hasAuthorship W4386365564A5067014994 @default.
- W4386365564 hasAuthorship W4386365564A5075042924 @default.
- W4386365564 hasBestOaLocation W43863655641 @default.
- W4386365564 hasConcept C105795698 @default.
- W4386365564 hasConcept C108583219 @default.
- W4386365564 hasConcept C115901376 @default.
- W4386365564 hasConcept C119857082 @default.
- W4386365564 hasConcept C12267149 @default.
- W4386365564 hasConcept C12554922 @default.
- W4386365564 hasConcept C127413603 @default.
- W4386365564 hasConcept C154945302 @default.
- W4386365564 hasConcept C169258074 @default.
- W4386365564 hasConcept C27158222 @default.
- W4386365564 hasConcept C2778827112 @default.
- W4386365564 hasConcept C2779362680 @default.
- W4386365564 hasConcept C33923547 @default.
- W4386365564 hasConcept C41008148 @default.
- W4386365564 hasConcept C50644808 @default.
- W4386365564 hasConcept C78519656 @default.
- W4386365564 hasConcept C83743174 @default.
- W4386365564 hasConcept C86803240 @default.
- W4386365564 hasConceptScore W4386365564C105795698 @default.
- W4386365564 hasConceptScore W4386365564C108583219 @default.
- W4386365564 hasConceptScore W4386365564C115901376 @default.
- W4386365564 hasConceptScore W4386365564C119857082 @default.
- W4386365564 hasConceptScore W4386365564C12267149 @default.
- W4386365564 hasConceptScore W4386365564C12554922 @default.
- W4386365564 hasConceptScore W4386365564C127413603 @default.
- W4386365564 hasConceptScore W4386365564C154945302 @default.
- W4386365564 hasConceptScore W4386365564C169258074 @default.
- W4386365564 hasConceptScore W4386365564C27158222 @default.
- W4386365564 hasConceptScore W4386365564C2778827112 @default.