Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386366160> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4386366160 endingPage "16" @default.
- W4386366160 startingPage "1" @default.
- W4386366160 abstract "Accurate and rapid diagnosis is a significant factor in reducing incidence rate; especially when the number of people inflicted with a disease is considerably high. In the healthcare sector, the decision-making process might be a complex and error-prone one due to excessive workload, negligence, time restrictions, incorrect or incomplete evaluation of medical reports and analyses, and lack of experience as well as insufficient knowledge and skills. Clinical decision support systems (CDSSs) are those developed to improve effectiveness of decisions by supporting physicians’ decision-making process regarding their patients. In this study, a new artificial intelligence-based CDSS and a user-friendly interface for this system were developed to ensure rapid and accurate detection of pandemic diseases. The proposed CDSS, which is called panCdss, uses hybrid models consisting of the Convolutional Neural Network (CNN) model and Machine Learning (ML) methods in order to detect covid-19 from lung computed tomography (CT) images. Transfer Learning (TL) models were used to detect monkeypox from skin lesion images and covid-19 from chest X-Ray images. The results obtained from these models were evaluated according to accuracy, precision, recall and F1-score performance metrics. Of these models, the ones with the highest classification performance were used in the panCdss. The highest classification values obtained for each dataset were as follows: % 91.71 accuracy, % 92.07 precision, % 90.29 recall and % 91.71 F1-score for covid-19 CT dataset by using CNN+RF hybrid model; % 99.56 accuracy, % 100 precision, % 99.12 recall and % 99.55 F1-score for covid-19 X-ray dataset by using VGG16 model; and % 90.38 accuracy, % 93.32 precision, % 88.11 recall and % 90.64 F1-score for monkeypox dataset by using MobileNetV2. It is believed that panCdss can be successfully employed for rapid and accurate classification of pandemic diseases and can help reduce physicians’ workload. Furthermore, the study showed that the proposed CDSS is an adaptable, flexible and dynamic system that can be practiced not only for the detection of pandemic diseases but also for other diseases. To the authors’ knowledge, this proposed CDSS is the first CDSS developed for pandemic disease detection." @default.
- W4386366160 created "2023-09-02" @default.
- W4386366160 creator A5021357272 @default.
- W4386366160 creator A5051674490 @default.
- W4386366160 creator A5084497117 @default.
- W4386366160 date "2023-08-30" @default.
- W4386366160 modified "2023-10-16" @default.
- W4386366160 title "A user-friendly AI-based clinical decision support system for rapid detection of pandemic diseases: Covid-19 and Monkeypox" @default.
- W4386366160 cites W2196089705 @default.
- W4386366160 cites W3036908895 @default.
- W4386366160 cites W3119875393 @default.
- W4386366160 cites W3122466891 @default.
- W4386366160 cites W3123982987 @default.
- W4386366160 cites W4200226120 @default.
- W4386366160 cites W4206929621 @default.
- W4386366160 cites W4229335297 @default.
- W4386366160 cites W4280640951 @default.
- W4386366160 cites W4281954558 @default.
- W4386366160 cites W4283811313 @default.
- W4386366160 cites W4298149125 @default.
- W4386366160 cites W4302286670 @default.
- W4386366160 cites W4303856989 @default.
- W4386366160 cites W4308159032 @default.
- W4386366160 cites W4311857681 @default.
- W4386366160 cites W4313857678 @default.
- W4386366160 cites W4318570647 @default.
- W4386366160 cites W4318814973 @default.
- W4386366160 cites W4321439249 @default.
- W4386366160 cites W4322587909 @default.
- W4386366160 cites W4327704827 @default.
- W4386366160 cites W4360944016 @default.
- W4386366160 cites W4376865522 @default.
- W4386366160 cites W4384201205 @default.
- W4386366160 doi "https://doi.org/10.3233/jifs-232477" @default.
- W4386366160 hasPublicationYear "2023" @default.
- W4386366160 type Work @default.
- W4386366160 citedByCount "0" @default.
- W4386366160 crossrefType "journal-article" @default.
- W4386366160 hasAuthorship W4386366160A5021357272 @default.
- W4386366160 hasAuthorship W4386366160A5051674490 @default.
- W4386366160 hasAuthorship W4386366160A5084497117 @default.
- W4386366160 hasConcept C100660578 @default.
- W4386366160 hasConcept C107327155 @default.
- W4386366160 hasConcept C111919701 @default.
- W4386366160 hasConcept C119857082 @default.
- W4386366160 hasConcept C12267149 @default.
- W4386366160 hasConcept C138885662 @default.
- W4386366160 hasConcept C148524875 @default.
- W4386366160 hasConcept C154945302 @default.
- W4386366160 hasConcept C2778476105 @default.
- W4386366160 hasConcept C41008148 @default.
- W4386366160 hasConcept C41895202 @default.
- W4386366160 hasConcept C63527458 @default.
- W4386366160 hasConcept C81363708 @default.
- W4386366160 hasConcept C81669768 @default.
- W4386366160 hasConcept C98045186 @default.
- W4386366160 hasConceptScore W4386366160C100660578 @default.
- W4386366160 hasConceptScore W4386366160C107327155 @default.
- W4386366160 hasConceptScore W4386366160C111919701 @default.
- W4386366160 hasConceptScore W4386366160C119857082 @default.
- W4386366160 hasConceptScore W4386366160C12267149 @default.
- W4386366160 hasConceptScore W4386366160C138885662 @default.
- W4386366160 hasConceptScore W4386366160C148524875 @default.
- W4386366160 hasConceptScore W4386366160C154945302 @default.
- W4386366160 hasConceptScore W4386366160C2778476105 @default.
- W4386366160 hasConceptScore W4386366160C41008148 @default.
- W4386366160 hasConceptScore W4386366160C41895202 @default.
- W4386366160 hasConceptScore W4386366160C63527458 @default.
- W4386366160 hasConceptScore W4386366160C81363708 @default.
- W4386366160 hasConceptScore W4386366160C81669768 @default.
- W4386366160 hasConceptScore W4386366160C98045186 @default.
- W4386366160 hasLocation W43863661601 @default.
- W4386366160 hasOpenAccess W4386366160 @default.
- W4386366160 hasPrimaryLocation W43863661601 @default.
- W4386366160 hasRelatedWork W1996541855 @default.
- W4386366160 hasRelatedWork W2996933976 @default.
- W4386366160 hasRelatedWork W3021430260 @default.
- W4386366160 hasRelatedWork W3027997911 @default.
- W4386366160 hasRelatedWork W305871689 @default.
- W4386366160 hasRelatedWork W3132076239 @default.
- W4386366160 hasRelatedWork W3195168932 @default.
- W4386366160 hasRelatedWork W4287776258 @default.
- W4386366160 hasRelatedWork W4381956280 @default.
- W4386366160 hasRelatedWork W4383535405 @default.
- W4386366160 isParatext "false" @default.
- W4386366160 isRetracted "false" @default.
- W4386366160 workType "article" @default.