Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386366942> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4386366942 endingPage "119593" @default.
- W4386366942 startingPage "119593" @default.
- W4386366942 abstract "It is of necessity to select appropriate optimization algorithms from an algorithm library due to the universality of constrained multi-objective optimization problems and the suitability of intelligent optimization algorithms, which requires a rich optimization algorithm library. This paper proposes a migration-based method of enriching the algorithm library for constrained multi-objective optimization problems. After calculating the similarity between problems based on their landscape features, the proposed method calculates the migration probabilities of intelligent optimization algorithms solving similar problems based on the performance of each algorithm and the similarity between problems. According to the redundancy and compatibility of components, the algorithms with large migration probabilities enrich the algorithm library for solving the current problem. Based on the enhanced algorithm library, a Softmax regression model is trained to generate an optimal intelligent algorithm to solve the current problem. The proposed method is applied to solve a series of constrained multi-objective optimization benchmark problems and the operation optimization problems of an integrated coal mine energy system, and the experimental results verify its effectiveness and feasibility." @default.
- W4386366942 created "2023-09-02" @default.
- W4386366942 creator A5003642180 @default.
- W4386366942 creator A5057127998 @default.
- W4386366942 creator A5084020460 @default.
- W4386366942 date "2023-11-01" @default.
- W4386366942 modified "2023-10-17" @default.
- W4386366942 title "Migration-based algorithm library enrichment for constrained multi-objective optimization and applications in algorithm selection" @default.
- W4386366942 cites W1662894842 @default.
- W4386366942 cites W1972279253 @default.
- W4386366942 cites W1997156721 @default.
- W4386366942 cites W2022485595 @default.
- W4386366942 cites W2048864521 @default.
- W4386366942 cites W2062061003 @default.
- W4386366942 cites W2063966510 @default.
- W4386366942 cites W2085507535 @default.
- W4386366942 cites W2126105956 @default.
- W4386366942 cites W2165698076 @default.
- W4386366942 cites W2187150571 @default.
- W4386366942 cites W2294865793 @default.
- W4386366942 cites W2621166576 @default.
- W4386366942 cites W2909104701 @default.
- W4386366942 cites W2912180855 @default.
- W4386366942 cites W2914106598 @default.
- W4386366942 cites W2963115819 @default.
- W4386366942 cites W2973142703 @default.
- W4386366942 cites W2979767393 @default.
- W4386366942 cites W2981450453 @default.
- W4386366942 cites W2981454419 @default.
- W4386366942 cites W3012133843 @default.
- W4386366942 cites W3036925570 @default.
- W4386366942 cites W3095394819 @default.
- W4386366942 cites W3109587892 @default.
- W4386366942 cites W3111850660 @default.
- W4386366942 cites W3134125492 @default.
- W4386366942 cites W3146654090 @default.
- W4386366942 cites W3153447034 @default.
- W4386366942 cites W3156480510 @default.
- W4386366942 cites W3164799763 @default.
- W4386366942 cites W3181638476 @default.
- W4386366942 cites W3197946950 @default.
- W4386366942 cites W3201248352 @default.
- W4386366942 cites W3206670347 @default.
- W4386366942 cites W3214147193 @default.
- W4386366942 cites W4285222441 @default.
- W4386366942 cites W4296912734 @default.
- W4386366942 cites W4307240875 @default.
- W4386366942 cites W4309047535 @default.
- W4386366942 cites W4319341403 @default.
- W4386366942 cites W4361001938 @default.
- W4386366942 cites W4376142828 @default.
- W4386366942 cites W4385578886 @default.
- W4386366942 cites W4386002848 @default.
- W4386366942 doi "https://doi.org/10.1016/j.ins.2023.119593" @default.
- W4386366942 hasPublicationYear "2023" @default.
- W4386366942 type Work @default.
- W4386366942 citedByCount "0" @default.
- W4386366942 crossrefType "journal-article" @default.
- W4386366942 hasAuthorship W4386366942A5003642180 @default.
- W4386366942 hasAuthorship W4386366942A5057127998 @default.
- W4386366942 hasAuthorship W4386366942A5084020460 @default.
- W4386366942 hasConcept C11413529 @default.
- W4386366942 hasConcept C126255220 @default.
- W4386366942 hasConcept C137836250 @default.
- W4386366942 hasConcept C2987595161 @default.
- W4386366942 hasConcept C33923547 @default.
- W4386366942 hasConcept C41008148 @default.
- W4386366942 hasConceptScore W4386366942C11413529 @default.
- W4386366942 hasConceptScore W4386366942C126255220 @default.
- W4386366942 hasConceptScore W4386366942C137836250 @default.
- W4386366942 hasConceptScore W4386366942C2987595161 @default.
- W4386366942 hasConceptScore W4386366942C33923547 @default.
- W4386366942 hasConceptScore W4386366942C41008148 @default.
- W4386366942 hasFunder F4320321001 @default.
- W4386366942 hasFunder F4320335777 @default.
- W4386366942 hasLocation W43863669421 @default.
- W4386366942 hasOpenAccess W4386366942 @default.
- W4386366942 hasPrimaryLocation W43863669421 @default.
- W4386366942 hasRelatedWork W2031052090 @default.
- W4386366942 hasRelatedWork W2031202609 @default.
- W4386366942 hasRelatedWork W2122227724 @default.
- W4386366942 hasRelatedWork W2386767533 @default.
- W4386366942 hasRelatedWork W2388727709 @default.
- W4386366942 hasRelatedWork W3127210649 @default.
- W4386366942 hasRelatedWork W3215353380 @default.
- W4386366942 hasRelatedWork W4292829086 @default.
- W4386366942 hasRelatedWork W4294276202 @default.
- W4386366942 hasRelatedWork W4364296815 @default.
- W4386366942 hasVolume "649" @default.
- W4386366942 isParatext "false" @default.
- W4386366942 isRetracted "false" @default.
- W4386366942 workType "article" @default.