Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386367032> ?p ?o ?g. }
- W4386367032 endingPage "107427" @default.
- W4386367032 startingPage "107427" @default.
- W4386367032 abstract "Epilepsy is a neurological disorder characterized by recurring seizures, detected by electroencephalography (EEG). EEG signals can be detected by manual time-consuming analysis and recently by automatic detection. The latter poses a significant challenge due to the high dimensional and non-stationary nature of EEG signals. Recently, deep learning (DL) techniques have emerged as valuable tools for seizure detection. In this study, a novel data-driven model based on DL, incorporating a self-attention mechanism (SAT), is proposed. One notable advantage of the proposed method is its simplicity in application, as the raw signal data is directly fed into the suggested network without requiring expertise in signal processing. The model leverages a one-dimensional convolutional neural network (CNN) to extract relevant features from EEG signals. These features are then passed through a long short-term memory (LSTM) module to benefit from its memory capabilities, along with a SAT mechanism. The key contribution of this paper lies in the addition of the SAT layer to the LSTM encoder, enabling enhanced exploration of the latent mapping during the encoding step. Cross-subject experiments revealed good performance of this approach with F1-score of 97.8% and 92.7% for binary and five-class epileptic seizure recognition tasks, respectively, on the public UCI dataset, and 97.9% on the CHB-MIT database, surpassing state-of-the-art DL performance. Besides, the proposed method exhibits robustness to inter-subject variability." @default.
- W4386367032 created "2023-09-02" @default.
- W4386367032 creator A5001471057 @default.
- W4386367032 creator A5030011660 @default.
- W4386367032 creator A5047285187 @default.
- W4386367032 creator A5059494671 @default.
- W4386367032 creator A5062310352 @default.
- W4386367032 date "2023-10-01" @default.
- W4386367032 modified "2023-09-28" @default.
- W4386367032 title "A self-attention model for cross-subject seizure detection" @default.
- W4386367032 cites W2053744708 @default.
- W4386367032 cites W2119234283 @default.
- W4386367032 cites W2158468574 @default.
- W4386367032 cites W2501549718 @default.
- W4386367032 cites W2502949459 @default.
- W4386367032 cites W2518736501 @default.
- W4386367032 cites W2580305911 @default.
- W4386367032 cites W2750384459 @default.
- W4386367032 cites W2754252319 @default.
- W4386367032 cites W2777670961 @default.
- W4386367032 cites W2790716321 @default.
- W4386367032 cites W2799610518 @default.
- W4386367032 cites W2914170396 @default.
- W4386367032 cites W2963588253 @default.
- W4386367032 cites W2964267916 @default.
- W4386367032 cites W2976267777 @default.
- W4386367032 cites W2987405155 @default.
- W4386367032 cites W2994921215 @default.
- W4386367032 cites W3007223525 @default.
- W4386367032 cites W3008297566 @default.
- W4386367032 cites W3019295470 @default.
- W4386367032 cites W3021673939 @default.
- W4386367032 cites W3030870789 @default.
- W4386367032 cites W3037704302 @default.
- W4386367032 cites W3045704945 @default.
- W4386367032 cites W3110770815 @default.
- W4386367032 cites W3128764679 @default.
- W4386367032 cites W3153903265 @default.
- W4386367032 cites W3159043558 @default.
- W4386367032 cites W3193369139 @default.
- W4386367032 cites W3195916919 @default.
- W4386367032 cites W3202863382 @default.
- W4386367032 cites W4206244879 @default.
- W4386367032 cites W4224995030 @default.
- W4386367032 cites W4285079306 @default.
- W4386367032 cites W4297226171 @default.
- W4386367032 cites W4309689906 @default.
- W4386367032 cites W4311626692 @default.
- W4386367032 cites W4316037831 @default.
- W4386367032 doi "https://doi.org/10.1016/j.compbiomed.2023.107427" @default.
- W4386367032 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37683531" @default.
- W4386367032 hasPublicationYear "2023" @default.
- W4386367032 type Work @default.
- W4386367032 citedByCount "0" @default.
- W4386367032 crossrefType "journal-article" @default.
- W4386367032 hasAuthorship W4386367032A5001471057 @default.
- W4386367032 hasAuthorship W4386367032A5030011660 @default.
- W4386367032 hasAuthorship W4386367032A5047285187 @default.
- W4386367032 hasAuthorship W4386367032A5059494671 @default.
- W4386367032 hasAuthorship W4386367032A5062310352 @default.
- W4386367032 hasConcept C101738243 @default.
- W4386367032 hasConcept C104317684 @default.
- W4386367032 hasConcept C108583219 @default.
- W4386367032 hasConcept C111919701 @default.
- W4386367032 hasConcept C118505674 @default.
- W4386367032 hasConcept C119857082 @default.
- W4386367032 hasConcept C12267149 @default.
- W4386367032 hasConcept C147168706 @default.
- W4386367032 hasConcept C153180895 @default.
- W4386367032 hasConcept C154945302 @default.
- W4386367032 hasConcept C15744967 @default.
- W4386367032 hasConcept C169760540 @default.
- W4386367032 hasConcept C185592680 @default.
- W4386367032 hasConcept C2778186239 @default.
- W4386367032 hasConcept C33923547 @default.
- W4386367032 hasConcept C41008148 @default.
- W4386367032 hasConcept C48372109 @default.
- W4386367032 hasConcept C50644808 @default.
- W4386367032 hasConcept C522805319 @default.
- W4386367032 hasConcept C55493867 @default.
- W4386367032 hasConcept C63479239 @default.
- W4386367032 hasConcept C66905080 @default.
- W4386367032 hasConcept C81363708 @default.
- W4386367032 hasConcept C94375191 @default.
- W4386367032 hasConceptScore W4386367032C101738243 @default.
- W4386367032 hasConceptScore W4386367032C104317684 @default.
- W4386367032 hasConceptScore W4386367032C108583219 @default.
- W4386367032 hasConceptScore W4386367032C111919701 @default.
- W4386367032 hasConceptScore W4386367032C118505674 @default.
- W4386367032 hasConceptScore W4386367032C119857082 @default.
- W4386367032 hasConceptScore W4386367032C12267149 @default.
- W4386367032 hasConceptScore W4386367032C147168706 @default.
- W4386367032 hasConceptScore W4386367032C153180895 @default.
- W4386367032 hasConceptScore W4386367032C154945302 @default.
- W4386367032 hasConceptScore W4386367032C15744967 @default.
- W4386367032 hasConceptScore W4386367032C169760540 @default.
- W4386367032 hasConceptScore W4386367032C185592680 @default.
- W4386367032 hasConceptScore W4386367032C2778186239 @default.