Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386370403> ?p ?o ?g. }
- W4386370403 endingPage "3140" @default.
- W4386370403 startingPage "3140" @default.
- W4386370403 abstract "In recent years, mountainous areas in China have faced frequent geological hazards, including landslides, debris flows, and collapses. Effective simulation of these events requires a solver for shallow water equations (SWEs). Traditional numerical methods, such as finite difference and finite volume, face challenges in discretizing convection flux terms, while theory-based models need to account for various factors such as shock wave capturing and wave propagation direction, demanding a high-level understanding of the underlying physics. Previous deep learning (DL)-based SWE solvers primarily focused on constructing direct input–output mappings, leading to weak generalization properties when terrain data or stress constitutive relations change. To overcome these limitations, this study introduces a novel SWE solver that combines theory and data-driven methodologies. The core idea is to use artificial neural networks to compute convection flux terms, and to reduce modeling complexity. Theory-based modeling is used to tackle complex terrain and friction terms for the purpose of ensuring generalization. Our method surpasses challenges faced by previous DL-based solvers in capturing terrain and stress variations. We validated our solver’s capabilities by comparing simulation results with analytical solutions, real-world disaster cases, and the widely used Massflow software-generated simulations. This comprehensive comparison confirms our solver’s ability to accurately simulate hazard scenarios and showcases strong generalization on varying terrain and land surface friction. Our proposed method effectively addresses DL-based solver limitations while simplifying the complexities of theory-driven numerical methods, offering a promising approach for hazard dynamics simulation." @default.
- W4386370403 created "2023-09-02" @default.
- W4386370403 creator A5016435310 @default.
- W4386370403 creator A5040206102 @default.
- W4386370403 creator A5048276213 @default.
- W4386370403 creator A5049211562 @default.
- W4386370403 creator A5063052790 @default.
- W4386370403 creator A5065430074 @default.
- W4386370403 creator A5080919041 @default.
- W4386370403 date "2023-09-01" @default.
- W4386370403 modified "2023-09-28" @default.
- W4386370403 title "A Hybrid Theory-Driven and Data-Driven Modeling Method for Solving the Shallow Water Equations" @default.
- W4386370403 cites W1772551698 @default.
- W4386370403 cites W1901616594 @default.
- W4386370403 cites W1966017107 @default.
- W4386370403 cites W1972446933 @default.
- W4386370403 cites W1985769645 @default.
- W4386370403 cites W2008181971 @default.
- W4386370403 cites W2016597687 @default.
- W4386370403 cites W2032746946 @default.
- W4386370403 cites W2050901550 @default.
- W4386370403 cites W2059362294 @default.
- W4386370403 cites W2081930221 @default.
- W4386370403 cites W2082337970 @default.
- W4386370403 cites W2159138302 @default.
- W4386370403 cites W2302412978 @default.
- W4386370403 cites W2346462415 @default.
- W4386370403 cites W2515505748 @default.
- W4386370403 cites W2527754209 @default.
- W4386370403 cites W2530906518 @default.
- W4386370403 cites W2542357505 @default.
- W4386370403 cites W2604171003 @default.
- W4386370403 cites W2609150059 @default.
- W4386370403 cites W2618131600 @default.
- W4386370403 cites W2760972773 @default.
- W4386370403 cites W2771024073 @default.
- W4386370403 cites W2784733489 @default.
- W4386370403 cites W2796314088 @default.
- W4386370403 cites W2797238750 @default.
- W4386370403 cites W2891039272 @default.
- W4386370403 cites W2899283552 @default.
- W4386370403 cites W2913323966 @default.
- W4386370403 cites W2919115771 @default.
- W4386370403 cites W2935716913 @default.
- W4386370403 cites W2948567396 @default.
- W4386370403 cites W2958172769 @default.
- W4386370403 cites W2962184214 @default.
- W4386370403 cites W2981510288 @default.
- W4386370403 cites W3000317883 @default.
- W4386370403 cites W3004259698 @default.
- W4386370403 cites W3097480168 @default.
- W4386370403 cites W3098175809 @default.
- W4386370403 cites W3101765447 @default.
- W4386370403 cites W3111357769 @default.
- W4386370403 cites W3112864646 @default.
- W4386370403 cites W3121673349 @default.
- W4386370403 cites W3123883114 @default.
- W4386370403 cites W3132459310 @default.
- W4386370403 cites W3142815406 @default.
- W4386370403 cites W3152265748 @default.
- W4386370403 cites W3161200675 @default.
- W4386370403 cites W3176558219 @default.
- W4386370403 cites W4205796181 @default.
- W4386370403 cites W4231651010 @default.
- W4386370403 cites W4324130858 @default.
- W4386370403 doi "https://doi.org/10.3390/w15173140" @default.
- W4386370403 hasPublicationYear "2023" @default.
- W4386370403 type Work @default.
- W4386370403 citedByCount "0" @default.
- W4386370403 crossrefType "journal-article" @default.
- W4386370403 hasAuthorship W4386370403A5016435310 @default.
- W4386370403 hasAuthorship W4386370403A5040206102 @default.
- W4386370403 hasAuthorship W4386370403A5048276213 @default.
- W4386370403 hasAuthorship W4386370403A5049211562 @default.
- W4386370403 hasAuthorship W4386370403A5063052790 @default.
- W4386370403 hasAuthorship W4386370403A5065430074 @default.
- W4386370403 hasAuthorship W4386370403A5080919041 @default.
- W4386370403 hasBestOaLocation W43863704031 @default.
- W4386370403 hasConcept C121332964 @default.
- W4386370403 hasConcept C126255220 @default.
- W4386370403 hasConcept C134306372 @default.
- W4386370403 hasConcept C140295346 @default.
- W4386370403 hasConcept C154945302 @default.
- W4386370403 hasConcept C161840515 @default.
- W4386370403 hasConcept C177148314 @default.
- W4386370403 hasConcept C178790620 @default.
- W4386370403 hasConcept C185592680 @default.
- W4386370403 hasConcept C18903297 @default.
- W4386370403 hasConcept C199360897 @default.
- W4386370403 hasConcept C2778770139 @default.
- W4386370403 hasConcept C28826006 @default.
- W4386370403 hasConcept C33923547 @default.
- W4386370403 hasConcept C41008148 @default.
- W4386370403 hasConcept C459310 @default.
- W4386370403 hasConcept C49261128 @default.
- W4386370403 hasConcept C50478463 @default.
- W4386370403 hasConcept C50644808 @default.
- W4386370403 hasConcept C57879066 @default.