Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386374948> ?p ?o ?g. }
- W4386374948 endingPage "166738" @default.
- W4386374948 startingPage "166738" @default.
- W4386374948 abstract "Grasslands represent the largest ecosystem in China, accurate and efficient extraction of its integrated vegetation cover (IVC) plays a crucial role in supporting policy decisions. This study presented a method for grassland monitoring via IVC derived from high-resolution satellite data. Taking the multispectral data of Gaofen-1 (GF-1) and Gaofen-6 (GF-6) with 16 m resolution as the main data source, vegetation cover of six representative regions was assessed based on mixed-pixel decomposition model. Using grassland vegetation cover and ratio of grassland area, the IVC in each site was calculated and verified against ground-measured sample data. The results showed that the IVC of grassland was closely related to vegetation habitat driven by regional hydrothermal regime. Yichang grassland, dominated with warm-temperate shrub tussock type, had the highest IVC (80.06 %) due to its favorable hydrothermal conditions. For the main grassland types in Hulunbuir and Gansu Province (temperate meadow steppe and temperate typical steppe), the IVC was 79.38 % and 58.46 %, respectively. In both Xilin-Gol and Nagqu, vegetation cover decreased gradually from east to west, and the IVC was merely 42.83 % and 42.61 %, respectively. Both regions are endowed with less hydrothermal resources to different degrees. Alxa, with a predominately temperate desert landscape, had the lowest IVC of 15.58 % where precipitation is extremely scarce. Based on the grass species of measured samples, the dominant species and biodiversity of different grassland types in Gansu Province and Hulunbuir Municipality of Inner Mongolia Autonomous Region were analyzed. The results showed that the meadow grassland has the richest biodiversity. The temperate mountain meadows in Gansu Province have a high species diversity, with a total of 90 grass species, and the lowland meadows in Hulunbuir have a total of 49 grass species. This study utilizes high-resolution data to conduct large-scale vegetation monitoring, which is a viable alternative for efficient assessment of steppe ecology." @default.
- W4386374948 created "2023-09-02" @default.
- W4386374948 creator A5000172404 @default.
- W4386374948 creator A5011845704 @default.
- W4386374948 creator A5011847146 @default.
- W4386374948 creator A5016351233 @default.
- W4386374948 creator A5018009227 @default.
- W4386374948 creator A5023363829 @default.
- W4386374948 creator A5027475930 @default.
- W4386374948 creator A5041424965 @default.
- W4386374948 creator A5056733015 @default.
- W4386374948 creator A5090114526 @default.
- W4386374948 date "2023-12-01" @default.
- W4386374948 modified "2023-10-15" @default.
- W4386374948 title "Integrated vegetation cover of typical steppe in China based on mixed decomposing derived from high resolution remote sensing data" @default.
- W4386374948 cites W1966910554 @default.
- W4386374948 cites W1983757373 @default.
- W4386374948 cites W2021973007 @default.
- W4386374948 cites W2023028057 @default.
- W4386374948 cites W2031715335 @default.
- W4386374948 cites W2049782549 @default.
- W4386374948 cites W2067671857 @default.
- W4386374948 cites W2091378956 @default.
- W4386374948 cites W2100903394 @default.
- W4386374948 cites W2144881411 @default.
- W4386374948 cites W2166897060 @default.
- W4386374948 cites W2332674235 @default.
- W4386374948 cites W2747222850 @default.
- W4386374948 cites W2781029546 @default.
- W4386374948 cites W2889979259 @default.
- W4386374948 cites W2894712623 @default.
- W4386374948 cites W3004912775 @default.
- W4386374948 cites W3006307446 @default.
- W4386374948 cites W3008384792 @default.
- W4386374948 cites W3027382987 @default.
- W4386374948 cites W3085244257 @default.
- W4386374948 cites W3167855040 @default.
- W4386374948 cites W339441670 @default.
- W4386374948 doi "https://doi.org/10.1016/j.scitotenv.2023.166738" @default.
- W4386374948 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37659563" @default.
- W4386374948 hasPublicationYear "2023" @default.
- W4386374948 type Work @default.
- W4386374948 citedByCount "0" @default.
- W4386374948 crossrefType "journal-article" @default.
- W4386374948 hasAuthorship W4386374948A5000172404 @default.
- W4386374948 hasAuthorship W4386374948A5011845704 @default.
- W4386374948 hasAuthorship W4386374948A5011847146 @default.
- W4386374948 hasAuthorship W4386374948A5016351233 @default.
- W4386374948 hasAuthorship W4386374948A5018009227 @default.
- W4386374948 hasAuthorship W4386374948A5023363829 @default.
- W4386374948 hasAuthorship W4386374948A5027475930 @default.
- W4386374948 hasAuthorship W4386374948A5041424965 @default.
- W4386374948 hasAuthorship W4386374948A5056733015 @default.
- W4386374948 hasAuthorship W4386374948A5090114526 @default.
- W4386374948 hasConcept C100970517 @default.
- W4386374948 hasConcept C105895522 @default.
- W4386374948 hasConcept C130989795 @default.
- W4386374948 hasConcept C142724271 @default.
- W4386374948 hasConcept C166957645 @default.
- W4386374948 hasConcept C18903297 @default.
- W4386374948 hasConcept C205649164 @default.
- W4386374948 hasConcept C2775835988 @default.
- W4386374948 hasConcept C2776133958 @default.
- W4386374948 hasConcept C2778898053 @default.
- W4386374948 hasConcept C39432304 @default.
- W4386374948 hasConcept C54286561 @default.
- W4386374948 hasConcept C62649853 @default.
- W4386374948 hasConcept C71924100 @default.
- W4386374948 hasConcept C81461190 @default.
- W4386374948 hasConcept C86803240 @default.
- W4386374948 hasConcept C97137747 @default.
- W4386374948 hasConceptScore W4386374948C100970517 @default.
- W4386374948 hasConceptScore W4386374948C105895522 @default.
- W4386374948 hasConceptScore W4386374948C130989795 @default.
- W4386374948 hasConceptScore W4386374948C142724271 @default.
- W4386374948 hasConceptScore W4386374948C166957645 @default.
- W4386374948 hasConceptScore W4386374948C18903297 @default.
- W4386374948 hasConceptScore W4386374948C205649164 @default.
- W4386374948 hasConceptScore W4386374948C2775835988 @default.
- W4386374948 hasConceptScore W4386374948C2776133958 @default.
- W4386374948 hasConceptScore W4386374948C2778898053 @default.
- W4386374948 hasConceptScore W4386374948C39432304 @default.
- W4386374948 hasConceptScore W4386374948C54286561 @default.
- W4386374948 hasConceptScore W4386374948C62649853 @default.
- W4386374948 hasConceptScore W4386374948C71924100 @default.
- W4386374948 hasConceptScore W4386374948C81461190 @default.
- W4386374948 hasConceptScore W4386374948C86803240 @default.
- W4386374948 hasConceptScore W4386374948C97137747 @default.
- W4386374948 hasLocation W43863749481 @default.
- W4386374948 hasLocation W43863749482 @default.
- W4386374948 hasOpenAccess W4386374948 @default.
- W4386374948 hasPrimaryLocation W43863749481 @default.
- W4386374948 hasRelatedWork W1922168053 @default.
- W4386374948 hasRelatedWork W2069346430 @default.
- W4386374948 hasRelatedWork W2092670449 @default.
- W4386374948 hasRelatedWork W2133155574 @default.
- W4386374948 hasRelatedWork W2260556438 @default.
- W4386374948 hasRelatedWork W2352868171 @default.