Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386375274> ?p ?o ?g. }
- W4386375274 endingPage "19" @default.
- W4386375274 startingPage "1" @default.
- W4386375274 abstract "Because of its complexity and prominence in the logistic field, the Pallet Loading Problem (PLP) has caught the attention of academics and practitioners as one of the most challenging cutting and packing optimization problems. To solve the PLP, several state-of-the-art Operations Research techniques have been used in the existing literature. This study evaluates the capacity of Deep Reinforcement Learning (DRL), one of the trendiest techniques of machine learning. Actually, the DRL is a combination of the Reinforcement Learning (RL) approach with Deep Neural Network (DNN). A specification phase of the DRL training process and the DNN input/output nodes embedded to solve this NP-hard combinatorial optimization problem is provided. We have used the UML standard to formally specify the complex sequential interaction between the different components of the DRL architecture during the training process. Thus, the DRL was tailored to solve the PLP with and without taking into account the practical stability constraints. The proposed approach was implemented, and computational experimentation was conducted on 16 Benchmark instances from the literature. Numerical results demonstrate that the DRL approach effectively solves the PLP with an average volume utilization of nearly 99%. To ensure package stability, realistic full support conditions were incorporated into the loading process algorithm, successfully resolving the corresponding PLP. Despite the time-consuming nature of the training process, the DRL approach consistently achieves competitive results, with a total average volume utilization of approximately 98%." @default.
- W4386375274 created "2023-09-02" @default.
- W4386375274 creator A5013999191 @default.
- W4386375274 creator A5092730591 @default.
- W4386375274 date "2023-01-01" @default.
- W4386375274 modified "2023-09-30" @default.
- W4386375274 title "Solving the Pallet Loading Problem with Deep Reinforcement Learning" @default.
- W4386375274 cites W1972030218 @default.
- W4386375274 cites W1979415050 @default.
- W4386375274 cites W1986718931 @default.
- W4386375274 cites W2005177364 @default.
- W4386375274 cites W2007539075 @default.
- W4386375274 cites W2012965407 @default.
- W4386375274 cites W2020835624 @default.
- W4386375274 cites W2048325170 @default.
- W4386375274 cites W2054093527 @default.
- W4386375274 cites W2054191514 @default.
- W4386375274 cites W2058697267 @default.
- W4386375274 cites W2060870627 @default.
- W4386375274 cites W2066368232 @default.
- W4386375274 cites W2068859858 @default.
- W4386375274 cites W2081509772 @default.
- W4386375274 cites W2089655322 @default.
- W4386375274 cites W2096882197 @default.
- W4386375274 cites W2099446973 @default.
- W4386375274 cites W2102843314 @default.
- W4386375274 cites W2105175235 @default.
- W4386375274 cites W2109314481 @default.
- W4386375274 cites W2115029143 @default.
- W4386375274 cites W2120854188 @default.
- W4386375274 cites W2161001022 @default.
- W4386375274 cites W2163787149 @default.
- W4386375274 cites W2170875746 @default.
- W4386375274 cites W2406489249 @default.
- W4386375274 cites W2965351602 @default.
- W4386375274 cites W3027146252 @default.
- W4386375274 cites W3033378018 @default.
- W4386375274 cites W3047863327 @default.
- W4386375274 cites W3201000358 @default.
- W4386375274 cites W3208917397 @default.
- W4386375274 cites W4206004885 @default.
- W4386375274 cites W4210320710 @default.
- W4386375274 cites W4229443124 @default.
- W4386375274 cites W4280613146 @default.
- W4386375274 cites W4285503992 @default.
- W4386375274 cites W4298135007 @default.
- W4386375274 cites W4306877219 @default.
- W4386375274 cites W4306877222 @default.
- W4386375274 cites W4327576913 @default.
- W4386375274 cites W4327734510 @default.
- W4386375274 cites W4377695283 @default.
- W4386375274 cites W4379057202 @default.
- W4386375274 cites W4381331997 @default.
- W4386375274 doi "https://doi.org/10.1007/978-981-19-8851-6_17-1" @default.
- W4386375274 hasPublicationYear "2023" @default.
- W4386375274 type Work @default.
- W4386375274 citedByCount "0" @default.
- W4386375274 crossrefType "book-chapter" @default.
- W4386375274 hasAuthorship W4386375274A5013999191 @default.
- W4386375274 hasAuthorship W4386375274A5092730591 @default.
- W4386375274 hasConcept C112972136 @default.
- W4386375274 hasConcept C119857082 @default.
- W4386375274 hasConcept C121332964 @default.
- W4386375274 hasConcept C126255220 @default.
- W4386375274 hasConcept C127413603 @default.
- W4386375274 hasConcept C13280743 @default.
- W4386375274 hasConcept C154945302 @default.
- W4386375274 hasConcept C185798385 @default.
- W4386375274 hasConcept C199360897 @default.
- W4386375274 hasConcept C20556612 @default.
- W4386375274 hasConcept C205649164 @default.
- W4386375274 hasConcept C33923547 @default.
- W4386375274 hasConcept C41008148 @default.
- W4386375274 hasConcept C50644808 @default.
- W4386375274 hasConcept C51413319 @default.
- W4386375274 hasConcept C62520636 @default.
- W4386375274 hasConcept C78519656 @default.
- W4386375274 hasConcept C97541855 @default.
- W4386375274 hasConcept C98045186 @default.
- W4386375274 hasConceptScore W4386375274C112972136 @default.
- W4386375274 hasConceptScore W4386375274C119857082 @default.
- W4386375274 hasConceptScore W4386375274C121332964 @default.
- W4386375274 hasConceptScore W4386375274C126255220 @default.
- W4386375274 hasConceptScore W4386375274C127413603 @default.
- W4386375274 hasConceptScore W4386375274C13280743 @default.
- W4386375274 hasConceptScore W4386375274C154945302 @default.
- W4386375274 hasConceptScore W4386375274C185798385 @default.
- W4386375274 hasConceptScore W4386375274C199360897 @default.
- W4386375274 hasConceptScore W4386375274C20556612 @default.
- W4386375274 hasConceptScore W4386375274C205649164 @default.
- W4386375274 hasConceptScore W4386375274C33923547 @default.
- W4386375274 hasConceptScore W4386375274C41008148 @default.
- W4386375274 hasConceptScore W4386375274C50644808 @default.
- W4386375274 hasConceptScore W4386375274C51413319 @default.
- W4386375274 hasConceptScore W4386375274C62520636 @default.
- W4386375274 hasConceptScore W4386375274C78519656 @default.
- W4386375274 hasConceptScore W4386375274C97541855 @default.
- W4386375274 hasConceptScore W4386375274C98045186 @default.